Outline of Today

• Who we are?
 – Prof: Thorsten Joachims
 – TAs: Aman Agarwal, Ashudeep Singh

• What is learning?
 – Examples of machine learning (ML).
 – What drives research in and use of ML today?

• Syllabus
 – Topics and Methods
 – Themes

• Administrivia
(One) Definition of Learning

• Definition [Mitchell]:

A computer program is said to learn from

• experience E with respect to some class of
• tasks T and
• performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.
What is the goal of CS6780?

• PhD-level introduction to machine learning
 – First or second ML class
• Broad, but deep along several key themes
• Enable your research in or with machine learning
• Practice “soft” skills you need as researcher
Syllabus

- Supervised Batch Learning: model, decision theoretic foundation, model selection, model assessment, empirical risk minimization
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- Statistical Learning Theory: generalization error bounds, VC dimension
- Large-Margin Methods: linear Rules, margin, Perceptron, SVMs
- Kernels: duality, non-linear rules, non-vectorial data
- Deep Networks: multi-layer perceptrons, convolutions, pooling
- Structured Output Prediction: hidden Markov model, Viterbi, structural SVMs, conditional random fields
- Probabilistic Models: generative vs. discriminative, maximum likelihood, Bayesian inference
- Latent Variable Models: k-means clustering, mixture of Gaussians, expectation-maximization algorithm, matrix factorization, embeddings
- Online Learning: experts, bandits, online convex optimization
- Causal Inference: interventional vs. observational data, treatment effects, policy learning
Theme: Prediction and Action

• Building intelligent systems vs. analyzing existing systems
 – Prediction
 – Intelligent action
 – Guarantees on prediction/action quality
 – Causality
Theme: Bias vs. Variance

• Fundamental trade-off in learning
 – Training error vs. prediction error
 – Model capacity
 – Statistical learning theory
 – Empirical risk minimization
Theme: Massive Overparameterization

• The success story of machine learning
 – Sparse linear models
 – Kernels
 – Deep networks
 → Number of parameters \gg number of examples
Theme: Theoretical Underpinning

• Theory for understanding sake
 – Identify the mechanisms at play in ML
 – Understand model complexity
 – Understand common themes between algorithms
Secondary Syllabus

• Practice “soft skills” needed to be a successful researcher
 – Pitch ideas
 – Present your work
 – Write convincing papers
 – Work in groups
 – Give constructive feedback to others
 – Use feedback constructively
Textbook and Course Material

• Main Textbooks
 – See other references on course web page

• Course Notes
 – Writing on backboard
 – Slides available on course homepage
Pre-Requisites

• Pre-Requisites
 – Programming skills (e.g. CS 2110)
 – Basic linear algebra (e.g. MATH 2940)
 – Basic probability theory (e.g. MATH 4710)
 – Basic multivariable calculus (e.g. MATH 1920)

• Not required
 – Previous ugrad machine learning course
Homework Assignments

• Assignments
 – 4 homework assignments
 – Some problem sets, some programming and experiments

• Policies
 – Assignments are due at the beginning of class on the due date.
 – Everybody has 5 “free” late days. Use them wisely.
 – Beyond that, assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
 – No assignments will be accepted after the solutions have been made available (typically 3-5 days after deadline).
 – Typically collaboration of two students (see each assignment for detailed collaboration policy).
 – Please review Cornell Academic Integrity Policy!
Exam

- Exam
 - April 25
 - In class
 - No final exam
Project

• Organization
 – Self-defined topic related to your interests and research
 – Groups of 2-3 students

• Deliverables
 – Proposal (March 12)
 – Poster Presentation (May 2, evening)
 – Report (May 13)
 – Peer review (May 15)
 – Author rebuttal (May 17)
Grading

• Deliverables
 – Exam (40% of Grade)
 – Project (35% of Grade)
 – Homeworks (20% of Grade)
 – Participation (5% of Grade)

• Outlier elimination
 – For homeworks, the lowest grade is replaced by the second lowest grade.

• Grade Options
 – Letter grade
 – S/U: a grade of at least D. Excludes project.
 – Audit: attend lectures. Excludes project, homeworks, exam.
Enrolling

• You can enroll in the class only
 – if you are a PhD student.

• Enrollment Process
 – open enrollment via studentcenter.

• Enrollment “Deadline”
 – first homework will come out Feb 5.
Audio/Video

• Live stream to Cornell Tech
• Recordings available after class
How to Get in Touch

• Online
 – Course Homepage (slides, references, policies, office hours)
 – Piazza forum (questions and comments)
 – CMS (homeworks and grades)
 – CMT (projects)
• Email Addresses
 – Thorsten Joachims: tj@cs.cornell.edu
 – Aman Agarwal: aa2398@cornell.edu
 – Ashudeep Singh: as3354@cornell.edu
• Office Hours
 – Thorsten Joachims:
 • Fridays 11:00pm – 12:00pm, 418 Gates Hall
 – Other office hours:
 • See course homepage
 – Zoom for CT students