Unsupervised Learning: k-Means and Mixtures of Gaussians

CS6780 – Advanced Machine Learning
Spring 2015
Thorsten Joachims
Cornell University
Reading: Murphy 11.1 – 11.4.2

Supervised Learning vs. Unsupervised Learning

• Supervised Learning
 – Classification: partition examples into groups according to pre-defined categories
 – Regression: assign value to feature vectors
 – Requires labeled data for training
• Unsupervised Learning
 – Clustering: partition examples into groups when no pre-defined categories/classes are available
 – Outlier detection: find unusual events (e.g. hackers)
 – Novelty detection: find changes in data
 – Only instances required, but no labels

Clustering

• Partition unlabeled examples into disjoint subsets of clusters, such that:
 – Examples within a cluster are similar
 – Examples in different clusters are different
• Discover new categories in an unsupervised manner (no sample category labels provided).

Applications of Clustering

• Exploratory data analysis
• Cluster retrieved documents
 – to present more organized and understandable results to user → “diversified retrieval”
• Detecting near duplicates
 – Entity resolution
 – E.g. “Thorsten Joachims” == “Thorsten B Joachims”
 – Cheating detection
• Automated (or semi-automated) creation of taxonomies
 – e.g. Yahoo, DMOZ
• Compression

Clustering Example
Clustering Criterion

- Evaluation function that assigns a (usually real-valued) value to a clustering
 - Clustering criterion typically function of
 - within-cluster similarity and
 - between-cluster dissimilarity
- Optimization
 - Find clustering that maximizes the criterion
 - Global optimization (often intractable)
 - Greedy search
 - Approximation algorithms

Similarity (Distance) Measures

- Euclidian distance (L_2 norm):
 \[
 L_2(\vec{x}, \vec{x}') = \sqrt{\sum_{i=1}^{N} (x_i - x'_i)^2}
 \]
- L_1 norm:
 \[
 L_1(\vec{x}, \vec{x}') = \sum_{i=1}^{N} |x_i - x'_i|
 \]
- Cosine similarity:
 \[
 \cos(\vec{x}, \vec{x}') = \frac{\vec{x} \cdot \vec{x}'}{\|\vec{x}\| \|\vec{x}'\|}
 \]
- Kernels
K-Means Algorithm

- Input: $k =$ number of clusters, distance measure d
- Select k random instances $\{s_1, s_2, ..., s_k\}$ as seeds.
- Until clustering converges or other stopping criterion:
 - For each instance x_i:
 - Assign x_i to the cluster c_j such that $d(x_i, s_j)$ is min.
 - For each cluster c_j:
 - Update the centroid of each cluster $s_j = \mu(c_j)$

Note: Clusters represented via centroids

$\mu(c) = \frac{1}{|c|} \sum_{x \in c} x$

Time Complexity

- Assume computing distance between two instances is $O(N)$ where N is the dimensionality of the vectors.
- Reassigning clusters for n points: $O(kn)$ distance computations, or $O(knN)$.
- Computing centroids: Each instance gets added once to some centroid: $O(nN)$.
- Assume these two steps are each done once for i iterations: $O(iknN)$.
- Linear in all relevant factors, assuming a fixed number of iterations.

Buckshot Algorithm

Problem

- Results can vary based on random seed selection, especially for high-dimensional data.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings.

- First randomly take a sample of instances of size $n^{1/2}$
- Run group-average HAC on this sample
- Use the results of HAC as initial seeds for K-means.
- Overall algorithm is efficient and avoids problems of bad seed selection.

Non-Hierarchical Clustering

- K-means clustering (“hard”)
- Mixtures of Gaussians and training via Expectation maximization Algorithm (“soft”)

Clustering as Prediction

- Setup
 - Learning Task: $P(X)$
 - Training Sample: $S = (x_1, ..., x_n)$
 - Hypothesis Space: $H = \{h_1, ..., h_M\}$ each describes $P(X|h_i)$ where h_i are parameters
 - Goal: learn which $P(X|h_i)$ produces the data
- What to predict?
 - Predict where new points are going to fall
Gaussian Mixtures and EM

• Gaussian Mixture Models
 – Assume
 \[P(X = x|h_j) = \sum_{i=1}^{k} P(X = x|Y = j, h_i)P(Y = j) \]
 where \(P(X = x|Y = j, h) = \mathcal{N}(x|\mu_j, \Sigma_j) = \frac{1}{\sqrt{2\pi} \sigma_j} e^{-\frac{1}{2} (x-\mu_j)^2} \)
 and \(h = (\mu_1, \ldots, \mu_k, \Sigma_1, \ldots, \Sigma_k) \).

• EM Algorithm
 – Assume \(P(Y) \) and \(k \) known and \(\Sigma_i = \text{1} \).
 – REPEAT
 1. \[\hat{\mu}_j = \frac{\sum_{i=1}^{n} P(Y = j|X = x, \hat{h}, \hat{\Sigma})}{\sum_{i=1}^{n} P(Y = j|X = x, \hat{h}, \hat{\Sigma})} \]
 2. \[P(Y = j|X = x, \hat{h}, \hat{\Sigma}) = \frac{P(X = x|Y = j, \hat{\Sigma})P(Y = j)}{\sum_{j=1}^{k} P(X = x|Y = j, \hat{\Sigma})P(Y = j)} \]