Support Vector Machines: Kernels

CS6780 – Advanced Machine Learning
Spring 2015

Thorsten Joachims
Cornell University

Reading: Murphy 14.1, 14.2, 14.4
Schoelkopf/Smola Chapter 7.4, 7.6, 7.8
Problem:
- some tasks have non-linear structure
- no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?
Extending the Hypothesis Space

Idea: add more features

Learn linear rule in feature space.

Example:

The separating hyperplane in feature space is degree two polynomial in input space.
Example

- Input Space: \(\mathbf{x} = (x_1, x_2) \) (2 attributes)
- Feature Space: \(\Phi(\mathbf{x}) = (x_1^2, x_2^2, x_1, x_2, x_1 x_2, 1) \) (6 attributes)
Dual SVM Optimization Problem

• Primal Optimization Problem

minimize: \[P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i \]
subject to: \[\forall_{i=1}^{n} : y_i [\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i \]
\[\forall_{i=1}^{n} : \xi_i > 0 \]

• Dual Optimization Problem

maximize: \[D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j) \]
subject to: \[\sum_{i=1}^{n} y_i \alpha_i = 0 \]
\[\forall_{i=1}^{n} : 0 \leq \alpha_i \leq C \]

• Theorem: If \(\vec{w}^* \) is the solution of the Primal and \(\alpha^* \) is the solution of the Dual, then

\[\vec{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \vec{x}_i \]
Kernels

• Problem:
 – Very many Parameters!
 – Example: Polynomials of degree \(p \) over \(N \) attributes in input space lead to \(O(N^p) \) attributes in feature space!

• Solution:
 – The dual OP depends only on inner products
 \[K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b}) \]

• Example:
 – For \(\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1) \) calculating \(K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2 \) computes inner product in feature space.

\[\Rightarrow \text{no need to represent feature space explicitly.} \]
SVM with Kernel

- **Training:**
 \[
 D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j K(\tilde{x}_i, \tilde{x}_j)
 \]
 subject to:
 \[
 \sum_{i=1}^{n} y_i \alpha_i = 0
 \]
 \[
 \forall i=1^n : 0 \leq \alpha_i \leq C
 \]

- **Classification:**
 \[
 h(\tilde{x}) = \text{sign} \left(\sum_{i=1}^{n} \alpha_i y_i \Phi(\tilde{x}_i) \cdot \Phi(\tilde{x}) + b \right)
 \]
 \[
 = \text{sign} \left(\sum_{i=1}^{n} \alpha_i y_i K(\tilde{x}_i, \tilde{x}) + b \right)
 \]

- **New hypotheses spaces through new Kernels:**
 - Linear: \(K(\tilde{a}, \tilde{b}) = \tilde{a} \cdot \tilde{b} \)
 - Polynomial: \(K(\tilde{a}, \tilde{b}) = [\tilde{a} \cdot \tilde{b} + 1]^d \)
 - Radial Basis Function: \(K(\tilde{a}, \tilde{b}) = \exp \left(-\gamma [\tilde{a} - \tilde{b}]^2 \right) \)
 - Sigmoid: \(K(\tilde{a}, \tilde{b}) = \tanh(\gamma [\tilde{a} \cdot \tilde{b}] + c) \)
Examples of Kernels

Polynomial
\[K(\tilde{a}, \tilde{b}) = [\tilde{a} \cdot \tilde{b} + 1]^2 \]

Radial Basis Function
\[K(\tilde{a}, \tilde{b}) = \exp \left(-\gamma [\tilde{a} - \tilde{b}]^2 \right) \]
What is a Valid Kernel?

Definition [simplified]: Let X be a nonempty set. A function is a valid kernel in X if for all n and all $x_1, \ldots, x_n \in X$ it produces a Gram matrix

$$G_{ij} = K(x_i, x_j)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

$$\forall \hat{\alpha}: \hat{\alpha}^T G \hat{\alpha} \geq 0$$
How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over $X \times X$, $\alpha \geq 0$, $0 \leq \lambda \leq 1$, f a real-valued function on X, $\phi:X \rightarrow \mathbb{R}^m$ with a kernel K_3 over $\mathbb{R}^m \times \mathbb{R}^m$, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

- $K(x,z) = \lambda K_1(x,z) + (1-\lambda) K_2(x,z)$
- $K(x,z) = \alpha K_1(x,z)$
- $K(x,z) = K_1(x,z) K_2(x,z)$
- $K(x,z) = f(x) f(z)$
- $K(x,z) = K_3(\phi(x),\phi(z))$
- $K(x,z) = x^T K z$
Kernels for Sequences: Two sequences are similar, if they have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For \(0 \leq \lambda \leq 1 \) consider the following features space

\[
\begin{array}{c|cccccccc}
\phi(\text{cat}) & c-a & c-t & a-t & b-a & b-t & c-r & a-r & b-r \\
\hline
\lambda^2 & \lambda^3 & \lambda^2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\phi(\text{car}) & \lambda^2 & 0 & 0 & 0 & 0 & \lambda^3 & \lambda^2 & 0 \\
\phi(\text{bat}) & 0 & 0 & \lambda^2 & \lambda^2 & \lambda^3 & 0 & 0 & 0 \\
\phi(\text{bar}) & 0 & 0 & 0 & \lambda^2 & 0 & 0 & \lambda^2 & \lambda^3 \\
\end{array}
\]

\[K(\text{car,cat}) = \lambda^4, \text{ efficient computation via dynamic programming} \]
Kernels for Non-Vectorial Data

• Applications with Non-Vectorial Input Data
 ➔ classify non-vectorial objects
 – Protein classification (x is string of amino acids)
 – Drug activity prediction (x is molecule structure)
 – Information extraction (x is sentence of words)
 – Etc.

• Applications with Non-Vectorial Output Data
 ➔ predict non-vectorial objects
 – Natural Language Parsing (y is parse tree)
 – Noun-Phrase Co-reference Resolution (y is clustering)
 – Search engines (y is ranking)

 ➔ Kernels can compute inner products efficiently!
Properties of SVMs with Kernels

• Expressiveness
 – SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
 – SVMs with Kernel can represent any sufficiently “smooth” function to arbitrary accuracy (for appropriate choice of kernel)

• Computational
 – Objective function has no local optima (only one global)
 – Independent of dimensionality of feature space

• Design decisions
 – Kernel type and parameters
 – Value of C
SVMs for other Problems

- Multi-class Classification
 - [Schoelkopf/Smola Book, Section 7.6]
- Regression
 - [Schoelkopf/Smola Book, Section 1.6]
- Outlier Detection
- Structured Output Prediction