## Statistical Learning Theory: Error Bounds and VC-Dimension

CS6780 – Advanced Machine Learning Spring 2015

> Thorsten Joachims Cornell University

Reading: Schoelkopf/Smola Chapter 5 (remainder)

## Vapnik Chervonenkis Dimension

 Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2<sup>d</sup> ways using functions from H (shattering).

## Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
  - Sample of n labeled instances S
  - Learning Algorithm L using a hypothesis space H with VCDim(H)=d
  - L returns hypothesis  $\hat{h}$ =L(S) with lowest training error
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability  $(1-\delta)$  it holds that



## **VC Dimension of Hyperplanes**

- Theorem: The VC Dimension of unbiased hyperplanes over N features is N.
- Theorem: The VC Dimension of biased hyperplanes over N features is N+1.