Statistical Learning Theory: Error Bounds and VC-Dimension

CS6780 – Advanced Machine Learning
Spring 2015
Thorsten Joachims
Cornell University

Reading:
Schoelkopf/Smola Chapter 5 (remainder)

Vapnik Chervonenkis Dimension

• Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).

Generalization Error Bound: Infinite H, Non-Zero Error

• Setting
 – Sample of n labeled instances S
 – Learning Algorithm L using a hypothesis space H with $VCDim(H)=d$
 – L returns hypothesis $\hat{h}=L(S)$ with lowest training error
• Given hypothesis space H with $VCDim(H)$ equal to d and an i.i.d. sample S of size n, with probability (1-δ) it holds that

\[
F_{\infty}(\hat{h}_S) \leq F_{\infty}(h_{\infty}) \cdot \sqrt{d} \frac{n}{\delta} \left(\frac{d}{n} + 1\right) \cdot \ln \left(\frac{2}{\delta}\right)
\]

VC Dimension of Hyperplanes

• Theorem: The VC Dimension of unbiased hyperplanes over N features is N.
• Theorem: The VC Dimension of biased hyperplanes over N features is N+1.