Outline of Today

- Who we are?
 - Prof: Thorsten Joachims
 - TAs: Daniel Sedra, Adith Swaminathan
- What is learning?
 - Examples of machine learning (ML).
 - What drives research in and use of ML today?
- Syllabus
- Administrivia

(One) Definition of Learning

- Definition [Mitchell]:
 A computer program is said to learn from
 - experience E with respect to some class of
 - tasks T and
 - performance measure P,
 if its performance at tasks in T, as measured by P, improves with experience E.

Syllabus

- Supervised Batch Learning: model, decision theoretic foundation, model selection, model assessment, empirical risk minimization
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- Statistical Learning Theory: generalization error bounds, VC dimension
- Large-Margin Methods: linear Rules, margin, Perceptron, SVMs
- Kernels: duality, non-linear rules, non-vectorial data
- Probabilistic Models: generative vs. discriminative, maximum likelihood, Bayesian inference
- Sequence Prediction: hidden Markov model, Viterbi
- Structured Output Prediction: undirected graphical models, structural SVMs, conditional random fields
- Latent Variable Models: k-means clustering, mixture of Gaussians, expectation-maximization algorithm, matrix factorization, embeddings
- Online Learning: experts, bandits, online convex optimization
- Other topics: neural nets, ensemble methods, sparsity, ...

Secondary Syllabus

- Practice “soft skills” needed to be a successful researcher
 - Pitch ideas
 - Present your work
 - Write convincing papers
 - Work in groups
 - Give constructive feedback to others
 - Use feedback constructively

Textbook and Course Material

- Main Textbooks
 - See other references on course web page
- Course Notes
 - Writing on whiteboard
 - Slides available on course homepage
Pre-Requisites

- **Pre-Requisites**
 - Programming skills (e.g. CS 2110)
 - Basic linear algebra (e.g. MATH 2940)
 - Basic probability theory (e.g. MATH 4710)
- **Not required**
 - Previous ugrad machine learning course

Homework Assignments

- **Assignments**
 - 4 homework assignments
 - Some problem sets, some programming and experiments
- **Policies**
 - Assignments are due at the beginning of class on the due date in hardcopy.
 - Assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
 - Everybody has 5 “free” late days. Use them wisely.
 - No assignments will be accepted after the solutions have been made available (typically 3-5 days after deadline).
 - Typically collaboration of two students (see each assignment for detailed collaboration policy).
 - Please review Cornell Academic Integrity Policy!

Exam

- **Exam**
 - April 16
 - In class
 - No final exam

Project

- **Organization**
 - Self-defined topic related to your interests and research
 - Groups of 2-3 students
- **Deliverables**
 - Pitch (Feb 3)
 - Proposal (Feb 12)
 - Presentation (last two weeks of classes)
 - Report (May 11)
 - Peer review (May 14)
 - Author rebuttal (May 15)

Grading

- **Deliverables**
 - Exam (35% of Grade)
 - Project (35% of Grade)
 - Homeworks (20% of Grade)
 - Participation (10% of Grade)
- **Outlier elimination**
 - For homeworks, the lowest grade is replaced by the second lowest grade.
- **Grade Options**
 - Letter grade
 - S/U: a grade of at least D. Excludes project.
 - Audit: attend lectures. Excludes project, homeworks, exam.

Enrolling

- **You can enroll in the class only**
 - If you are a PhD student, and
 - If you have not previously taken CS4780 or CS5780.
- **Enrollment Process**
 - get manual enrollment form from me today after class.
- **Enrollment Priorities**
 - CS PhD Students
 - Other PhD Students in the order that I have received email from asking for enrollment permission
 - Other PhD Students that have not contacted me before
How to Get in Touch

- Online
 - Course Homepage (slides, references, policies, office hours)
 - Piazza forum (questions and comments)
 - CMS (homeworks and grades)
- Email Addresses
 - Thorsten Joachims: tj@cs.cornell.edu
 - Daniel Sedra: dms422@cornell.edu
 - Adith Swaminathan: fa234@cornell.edu
- Office Hours
 - Thorsten Joachims:
 - Fridays 1:30pm – 2:30pm, 418 Gates Hall
 - Exception: on Friday Jan 23 from 12:30-1:30
 - Other office hours:
 - See course homepage