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1 Introduction

Across all sectors of the modern information economy, large unstructured repositories of data are
being aggregated at an ever-increasing rate. This move towards ‘big data’ has created an enormous
demand for techniques to efficiently extract structure from such data sets. Specific contexts for this
demand include natural language models for organizing text corpuses, image feature extraction mod-
els for navigating large photo datasets, and community detection in social networks for optimizing
content delivery. Models of such structure are broadly called topic models or latent variable mixture
models, aiming to identify maximally informative latent topics common to different elements of the
unstructured dataset.

In this work our primary context for topic modeling will be natural language processing. In this
context we will regard documents d belonging to a fixed collectionD (|D| = m) via the simplifying
assumption that each document is merely an unordered collection of words w drawn with replace-
ment from a fixed vocabulary V (|V | = n). From this assumption we obtain a n ×m dimensional
data matrix X of word counts, where element Xij is the number of times word wi appeared in
document dj .

Given such a data matrix, the goal of natural language topic models is to find a decomposed matrix
approximation of X such that each column of X corresponding to a document is interpretable as
a linear combination

∑K
k=1 wkhkj , where the vectors wk are the vocabularies of K topics, and the

elements hkj are the topic weights associating document dj with each topic. Generally, we seek an
n ×K vocabulary matrix W and a K ×m document matrix H such that X is well-approximated
by WH .

Ordinarily it is assumed that K � m, namely that the number of topics is much less than the
number of documents. We call this the low-rank assumption. In this work we explore an additional
assumption with notably different consequences, namely that individual document only incorporate
a small subset of the k topics, and as such each document is assumed to arise as a mixture of only
L� K of the topics. This is equivalently an assumption about the sparsity of the document matrix
H , and so we call this the sparsity assumption. Topic models are often celebrated for their ability
to naturally infer sparse topic weights for documents without any assumption necessary, but in this
work we perform a formal analysis of how this assumption can be harnessed explicitly to improve
the performance of topic models.

Common algorithms for topic modeling discussed in this work include Non-negative matrix fac-
torization (NMF, [12]), Probabilistic latent semantic indexing (PLSI, [11]), and Latent dirichlet
allocation (LDA, [4]). The three algorithms are in fact very closely related: NMF is an unassum-
ing optimization problem, PLSI is a nearly equivalent probabilistic re-formulation of NMF [9], and
LDA is fully Bayesian generative extension of PLSI.
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The sparsity assumption we make is fundamentally a frequentist assumption, since sparsity is ulti-
mately a statement about a single ‘maximum likelihood’ or ‘maximum a posteriori’ point-estimated
topic model produced as the output of some optimization scheme over the class of models. Mean-
while fully Bayesian approaches such as LDA output posterior distributions across the model space.
As a result, our discussion of LDA is limited to occasional commentary, and the main focus of our
work is the inference schemes for ML and MAP estimated NMF and PLSI models.

The paper is organized as follows. In section 2, we present the topic models behind traditional
NMF and PLSI, derived as maximum likelihood estimation problems for probabilistic models, and
establish the connections between NMF and PLSI previously observed in the literature. In section
3 we extend NMF and PLSI towards the MAP framework with the goal of incorporating a sparsity
assumption. Here we identify equivalencies between regularizations of the ML optimization prob-
lem and MAP prior distributions. In section 4, we present an application of our MAP/regularization
techniques for text mining web logs.

2 ML Point Estimation

This section reviews point estimation for NMF and PLSI topic models, based on previously estab-
lished results from the research literature.

2.1 NMF as Maximum Likelihood

As an optimization problem, non-negative matrix factorization seeks W ∈ Rn×k+ , H ∈ Rk×m+ such
that some distance between X and WH is minimized. While many distances have been considered
in the literature [8, 12], we will principally concern ourselves with minimizing the Kullback-Leibler
(KL) divergence:

D(X||WH) =

n∑
i=1

m∑
j=1

Xij log
Xij

(WH)ij
−Xij + (WH)ij . (1)

Note that
∑
ij Xij is constant. With this, the problem of minimizing the KL divergence becomes:

min
W,H

n∑
i=1

m∑
j=1

Xij log
Xij

(WH)ij
+ (WH)ij , s.t. W,H ≥ 0 (2)

This objective function is non-convex, which implies that global maxima will be very hard to find
with any certainty.

The specific interest for NMF measured by KL divergence, henceforth referred to simply as NMF,
is due to it’s exact agreement with the maximum likelihood inference problem of estimating the
parameters of a Poisson random matrix [13]. To see this, let Xt be an observation of a k-topic
random matrix Πt ∼ Pois(tWH), where each element (Πt)ij ∼ Pois(t

∑
k=1K wikhkj). Here W ,

H are our low-rank rectangular matrixes as above, where wik ≥ 0 is the intensities for the word i
in topic k and hkj ≥ 0 designates the ‘amount’ of topic k in document j. Let X = t−1Xt be a
time-normalized version of the observation.

Given a data matrixX originating from this model, we can derive the Maximum Likelihood estimate
of the intensity parameter matrixes W,H ≥ 0. The log-likelihood function for the model is given
by:

`(W,H;X) =
∑
ij

log

(
(WH)

Xij

ij

Xij !
exp{−(WH)ij}

)
= −

∑
i,j

Xij log
Xij

(WH)ij
− (WH)ij , (3)

where the constant term has been dropped. We see that maximizing the log-likelihood is equiv-
alent to the NMF minimization problem in (2). The preferred algorithm for solving this problem
within the NMF literature is a multiplicative update algorithm derived by Lee and Seung [12] via a
manipulation of gradient descent, derived here for Wik only:

Wik ←Wik + δik

(∑
j

XijHkj

(WH)ij
−
∑
j

Hkj

)
. ∀i, k, (4)
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With a clever choice of step-size δik = Wik/
∑
j Hkj and a corresponding choice of step-size for

updating all Hkj , we obtain a set of multiplicative update rules, which, given non-negative initial
conditions, are guaranteed to remain non-negative:

Wik ←Wik

∑
j Hkj

Xij

(WH)ij∑
j Hkj

, ∀i, k Hkj ← Hkj

∑
iWik

Xij

(WH)ij∑
iWik

. ∀j, k (5)

The algorithm is guaranteed to converge to a local optima [12].

2.2 Constrained NMF for identifiability

Given a solution (W,H) to (2), any transformation of the form (WB,B−1H) will obtain the same
value of the objective function. During implementation, it is therefore convenient to fix the `1-norm
for the columns or rows of one of the matrixes, typically the columns of W . This is effectively
done by normalizing the column sums, projecting the column vectors of W onto the simplex. The
constrained algorithm is then:

W ′ik ←Wik

∑
j Hkj

Xij
(WH)ij∑

j Hkj
, ∀i, k Hkj ← Hkj

∑
iWikXij

(WH)ij
, ∀j, k (6)

Wik ←W ′ik/
∑
iW
′
ik ∀k. (7)

Equivalently, this normalization is what results from considering the constrained optimization prob-
lem via the method of Lagrangian multipliers (not shown). This modification preserves both the
non-negativity and the convergence properties of the original algorithm [9].

2.3 Maximum Likelihood PLSI

Following [9, 10], we briefly review the equivalence between NMF and PLSI. Let Y =
X/(

∑
ij Xij) be a normalization of the data matrix. Probabilistic latent semantic indexing ap-

proaches Y as an empirical observation of the joint distribution P (i, j) over (word, document) pairs,
and assumes that both word and document distributions are latent variable mixtures of conditional
independent multinomial distributions. PLSI seeks to identify a decomposition:

P (wi, dj) =

K∑
k=1

P (wi, dj , zk) =

K∑
k=1

P (wi|zk)P (zk)P (dj |zk), (8)

where zk are the latent variables corresponding to the K topics. Given Y as an observation of
P (wi, dj) and regarding P (wi|zk), P (dj |zk), and P (zk) as parameters of the model, the log-
likelihood function for these parameters can be manipulated as:

` =

n∑
i=1

m∑
j=1

Yij logP (wi, dj) = −
∑
ij

Yij log
Yij

P (wi, dj)
− P (wi, dj), (9)

where we use the fact that
∑
ij Yij log Yij and

∑
ij P (wi, dj) = 1 are constants. We recognize

the log-likelihood maximization problem for Y as corresponding to the NMF minimization for X
in (2). Since X and Y differ only by a multiplicative constant, the optimization problems are the
same. This leads to the following proposition.
Proposition 1. Probabilistic Latent Semantic Indexing for inferring an approximate decomposition
P (wi, dj) =

∑
k P (wi|zk)P (zk)P (dj |zk) is equivalent to Non-negative Matrix Factorization for

inferring an approximate decomposition X = WH for a normalized matrix X.

Proof. Setting Wik = P (wi|zk), we see that W is exactly the simplex-normalized vocabulary ma-
trix we considered when solving NMF. SettingHkj = P (zk)P (dj |zk), it can be shown (see [9]) that
since Y is normalized and W is always column-stochastic, H returned from the NMF multiplica-
tive update algorithm will also be normalized. As such it can be decomposed into a row-stochastic
matrix P (dj |zk) and a k × k normalized diagonal matrix P (zk).

Since the NMF and PLSI objective functions are the same, and a solution to the NMF problem yields
a solution to the PLSI problem (it is straight-forward to see that the reverse is also true), they are the
same problem.
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While PLSI can thus be solved by the multiplicative update rules of NMF, PLSI is more typically
solved by the EM algorithm commonly used for probabilistic mixture models. The EM algorithm
has the same stationary conditions but in fact follows a different trajectory through the fitness land-
scape [10], an observation that has notably led to the development of hybrid algorithms [9].

3 Priors and regularization

This section offers novel contributions to the NMF and PLSI literature by considering MAP and
regularized formulations of the traditional ML point estimation problem, specifically adapted for
inferring sparse topic models.

3.1 On regularization for sparsity

In order to formally impose sparsity constraints on our document matrix H in our NMF problem,
or similarly impose sparsity on the document-topic distribution P (d|z) from PLSI, we would need
to solve the optimization problem in (2) subject to a constraint on the `0 norm of H . Equivalently
(by constructing an unconstrained Lagrangian), we could penalize/regularize the objective function
in (2) by adding a regularization term λ||H||0, for some λ > 0. The problem with `0 regularization
is that the `0 norm is combinatorial in nature, and there are 2mK different sparsity patterns for the
H matrix that would need to be considered.

This difficulty is commonly circumvented by considering the `1 norm as an approximation of the `0
norm, and imposing an `1 regularizations of the model parameters, as was pioneered by the LASSO
algorithm for regression shrinkage [15]. The strength of `1 regularization is normally that it can
be added to convex objective functions (such as least squares for regression) to obtain a quadratic
program that can be solved efficiently. Recall that the KL-NMF objective function is not convex,
and so in our context we do not necessarily gain anything form this point.

The intuition behind the sparsity resulting from `1 regularization is that the gradient of the penalty
term is discontinuous at zero, and persistently penalizes even small values towards zero, which
preferentially selects for sparse optima. For comparison, consider `2 regularization (as found in ridge
regression [5]), where the penalty gradient has a vanishing effect on the overall gradient movement
as parameter values approach zero.

In the original derivation of the LASSO algorithm, Tibshirani further noted that `1 regularization cor-
responds to performing a MAP estimation of the regression parameters given a double-exponential
prior on the parameters. Contrasting this to the zero-mean Normal prior corresponding to `2-
regularized ridge regression, the density of the double-exponential prior is more concentrated at
zero and in its tails, leading to a greater concentration around a few large values [15].

At this point it is important to note that the parameters of PLSI, namely the distributions we are es-
timating, P (z), P (w|zk) and P (d|zk) for k = 1, . . . ,K, are all restricted to taking values on some
simplex, i.e. each such distribution has a fixed `1 norm, with the total `1 norm of the document-
topic distribution P (d|z) fixed at K. This makes `1 regularization inapplicable for PLSI. In order
to induce sparsity on our PLSI inference problem, we are forced to consider strictly concave regu-
larization functions.

First we will consider correspondences between MAP priors and regularizations for NMF, where
the document matrix H is not restricted in its `1 norm. In doing so, we will see that a specific
concave regularization (log-sum) has a favorable MAP interpretation. We then develop this regular-
ization further for the case of PLSI, proposing a novel algorithm for inducing sparsity on PLSI point
estimates.

3.2 MAP NMF: Correspondences between priors and regularizations

For MAP estimation, we consider prior distributions on H , characterized by a density fH with
hyperparameters θ. We aim to find the W,H ≥ 0 which maximize the log-likelihood function:

`MAP = log
(∏

ij

Pr(Xij |W,H)×
∏
jk

fH(Hkj |θ)
)

= `ML +
∑
jk

log fH(Hkj |θH) (10)
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We identify g(Hkj ; θ) = −
∑
jk log fH(Hkj |θ) as the MAP-equivalent regularization term, and

from this we can make the general observation that MAP estimation corresponds to the regularized
optimization problem

min
W,H

D(X||W,H) + g(Hkj ; θ) s.t. W,H ≥ 0,
∑
i

Wik = 1,∀k. (11)

This is in fact not a statement about NMF, but about the relationship between MAP estimation and
regularization in general. We are specifically interested in prior distributions over the non-negative
real numbers R+ with a high likelihood for taking a value of zero. In light of this, we present the
following correspondences.
Proposition 2. MAP estimation with the prior H ∼ Exp(θ) i.i.d. is equivalent to `1-regularized
optimization, where g(Hkj ; θ) = θ||H||1.
Proposition 3. MAP estimation with the prior fH(x|α) = (1 + x)−α−11[x≥0], e.g. H ∼
Pareto[0,∞)(α) i.i.d., is equivalent to regularized optimization where g(Hkj ; θ) = (1 +
α)
∑
kj log(1 +Hkj).

The correspondence between the exponential prior and `1 regularization is merely the non-negative
version of the correspondence observed for the LASSO algorithm, and in fact this correspondence
for NMF has been alluded to before in an earlier examination of MAP NMF not focussed on sparsity
[7]. More interestingly, we notice that placing a heavy-tailed Pareto prior on H corresponds to a
concave log-sum regularization of the elements. With our goal of sparsity in mind, this penalty
function is in fact a better approximation than `1 to `0.

Concave regularizations are of little interest for convex optimization problems, since they breaks the
common efficient solution methods using convex programming, but given that our problem is not
convex, it is fully deserving of our consideration. Log-sum regularization is particularly deserving
of our consideration when we consider the recent work by Candès, Wakin, and Boyd on weighted
`1 minimization for compressed sensing [6].

The work by Candès et al. explores improvements upon the sparsity properties of `1 regularization,
proposing an algorithm for iteratively solving a sequence of adaptively re-weighted `1 minimization
problems in order to ‘more democratically penalize non-zero coefficients.’ The authors show that
their iteratively re-weighted minimization outperforms ordinary `1 minimization for reconstructing
sparse signals in a variety of compressed sensing problems. Importantly, they show how their iter-
atively reweighted `1 algorithm is in fact a majorization-minimization (MM) algorithm for solving
the non-convex optimization problem

min

n∑
i=1

log(|xi|+ ε) s.t. Φx = y, (12)

where Φ is a matrix specified by the compressed sensing problem and ε > 0 is a smoothing pa-
rameter of their algorithm governing the severity of the regularization. Given the success of their
algorithm for compressed sensing, log-sum regularization is a promising approach to inducing spar-
sity, and to the best of our knowledge the correspondence between Pareto priors and ε = 1 in the
Candès et al. algorithm is novel.

Moreover, this connection suggests a concave regularization algorithm for inducing sparsity on the
simplex-constrained PLSI parameters, which we consider in Section 3.4.

3.3 A multiplicative MAP NMF algorithm

Here we derive an intuitive sufficient condition on the prior probability distribution fH such that the
multiplicative update algorithm will remain non-negative.
Lemma 1. If the prior densities fH is non-increasing, i.e. f ′H(x|θ) ≤ 0, ∀x ≥ 0, then the non-
negative multiplicative update algorithm for MAP is given by

W ′ik ←Wik

∑
j Hkj

Xij
(WH)ij∑

j Hkj
, ∀i, k, Hkj ← Hkj

∑
iWik

Xij
(WH)ij

1+g′(Hjk;θ)
, ∀j, k, (13)

Wik ←W ′ik/
∑
iW
′
ik ∀k

where g(Hkj ; θ) = −
∑
jk log fH(Hkj |θ).
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Proof. The multiplicative update algorithm follows from constructing the induced gradient descent
algorithm, following (4), and setting the step-size for Hkj to δik = Hkj/(1 + g′(Hjk; θ)).

It is clear that we require the denominator of the multiplicative update factor for all Hkj to be non-
negative. Recall that the density is non-negative, fH(Hkj |θ) ≥ 0. From the following manipulation

1 + g′(Hjk; θ) = 1− ∂

∂Hkj
log (fH(Hkj |θ)) ≥ 0,∀j, k ⇔ f ′H(Hkj |θ)

fH(Hkj |θ)
≤ 1,∀j, k, (14)

we see that f ′H(Hkj |θ) ≤ 0 is clearly sufficient.

In the previous section we noted that we were specifically interested in priors with a high likelihood
for taking a value of zero. Fortunately, this is precisely what f ′H(Hkj |θ) ≤ 0 says, and from the
above lemma we see that both the Exponential and Pareto priors yield non-negative MAP update
algorithms. Note that we have not established the convergence of this algorithm at this time.

3.4 MAP PLSI and the Bounded pseudo-Dirichlet distrubtion

In Section 2.3 we showed that for maximum likelihood estimation, PLSI is equivalent to a normal-
ized version of NMF. For the purposes of maximum likelihood inference, it is sound to assume that
the normalized document matrixH can be decomposed asH = P (z)P (d|z). For MAP inference, it
is however important to note that the normalization and decomposition assumptions greatly restrict
the possible prior distributions one can tractably approach. For instance, the Pareto i.i.d. prior for
the elements of H that is feasible for NMF is not tractable for PLSI: the elements of each distri-
bution P (d|zk) have a non-trivial joint structure on a (m − 1)-dimensional simplex with no clear
Pareto-i.i.d.-analog.

For MAP PLSI we are restricted to considering prior distributions on the simplex, with the canonical
variety being the class of Dirichlet distributions Dir(~α). As a well-balanced prior distribution, we
focus our interests on the special case of the symmetric Dirichlet distribution Dir(α1), where α is the
scalar concentration parameter which corresponds to how concentrated we think the distribution is
on the simplex. A prior with a small concentration parameter (α� 1) assumes that the distribution
is concentrated on only a few elements, while a large concentration parameter (α � 1) assumes a
relatively even distribution across the elements. As such, the concentration parameter is exactly a
sparsity parameter.

Recall that the density function of the symmetric Dirichlet distribution is given by

fD(x1, . . . , xN ;α1) =
1

B(α1)

N∏
i=1

xα−1i , x ∈ ∆N−1, (15)

where B(·) is the multinomial Beta function and ∆N−1 is the N − 1 dimensional simplex. From
the above presentation, the Dirichlet distribution comes across as the perfect prior distribution for
inducing sparsity on the simplex. Indeed, Latent dirichlet allocation (LDA) takes precisely this
approach [4].

The problem is that the Dirichlet density function is unbounded precisely for sparse concentration
parameters α < 1, which makes point estimation with a concentrated Dirichlet prior an ill-defined
optimization problem. Previous work on MAP PLSI has dodged this problem by focusing on Dirich-
let priors that introduce smoothing (α > 1) rather than sparsity [1], in which case the density is
indeed bounded. Also, the fully Bayesian framework behind LDA is also capable of overcoming the
unbounded density function, since LDA seeks a posterior distribution rather than a point-estimate,
but as we’ve mentioned before, the downside of this is that LDA can not be trained to find true
sparsity.

We address the Dirichlet distribution’s unbounded density by proposing a distribution that is a mod-
ification specifically intended for use in point-estimating sparse parameter vectors on the simplex.
We call this distribution the bounded pseudo-Dirichlet distribution.
Definition 1. The bounded pseudo-Dirichlet distribution has the probability density function

fD(x1, . . . , xN ;α1) = C(ε)

N∏
i=1

(xi + ε)−1 x ∈ ∆N−1, (16)
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where ε > 0 is the regularization parameter, C(ε) is a normalization constant that depends on ε,
and ∆N−1 is the N − 1 dimensional simplex.

Notice the close similarity to the Dirichlet distribution in (15), where we have simply set α = 1
and used ε to smooth the unbounded singularities along the simplex boundary. Setting α = 1 is
not strictly necessary, but reduces the distribution to a one parameter family. More significantly, the
bounded pseudo-Dirichlet prior corresponds exactly the ε-smoothed log-sum penalty which Candès
et al. demonstrated as a concave improvement over `1 optimization for compressed sensing [6]. We
formalize this as a proposition.

Proposition 4. MAP point estimation with a Bounded pseudo-Dirichlet prior distribution BpD(ε)
on the simplex is equivalent to regularized optimization where g(Hkj ; ε) =

∑
kj log(Hkj + ε).

The shape of the bounded pseudo-Dirichlet distribution is shown in Figure 1, along with correspond-
ing log-sum regularizations. The BpD(ε) prior lacks many of the formal properties of the Dirichlet
distribution. Notably, unlike the Dirichlet distribution it is not a conjugate prior to the multinomial
distribution. But for the purposes of regularized point-estimation of parameters on a simplex, it is
a very clean parameterization of prior knowledge for sparsity, and unlike the Dirichlet distribution,
the fact that it is bounded leads to a well-posed MAP optimization problem.
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Figure 1: Left: the relative concavity of different sum-log regularization functions, which have
been translated and rescaled for comparison. Right: The 2-dimensional Bounded pseudo-Dirichlet
distribution on [0, 1] (the 1-dimensional simplex), for several values of ε.

4 Application: text mining weblogs

We present a very brief application of the theory developed above, in which we infer a PLSI topic
model using a Bounded pseudo-Dirichlet MAP-gradient descent algorithm for a medium sized cor-
pus of 2894 blogger.com blogs, a dataset originally analyzed by Schler et al. [14] for the role of
gender in language. Unigram frequencies for the blogs were built using the python NLTK toolkit
[3]. Inference was run on a document-word matrix consisting of the 2894 blogs and 5000 most
common words, as determined by the aggregate frequencies across the entire corpus. The blogs in
the corpus all had associated with them user-provided labels, providing one of 28 categories. We
focused our analysis on 10 varied but representative topics, while the complete corpus contained
over 19,000 blogs.

Ordinary NMF gradient descent descent was compared to Bounded pseudo-Dirichlet MAP gradient
descent, where the regularization parameter was set to ε = 0.02. A 5-fold cross-validation to de-
termine an optimal ε would have been preferred, and an investigation into the nature of ε remains
as future work. The MAP algorithm was initiated from the solution of the ML NMF algorithm.
This follows the observation of Candès et al. [6] that the concave regularization can attenuate local
optima, and so starting from the solution to the ML problem ensures that the algorithm has reached a
reasonable neighborhood of the solution space. The NMF algorithm was initiated with a uniformly
drawn initial condition.

7



The ground truth topic labels in the data are quite noisy, and really we feel that this is perhaps not
the ideal data set to publish this algorithm for, so a quantitative analysis of performance was not
pursued. From Figure 2, it is however qualitatively clear that the prior does indeed induce sparsity.
The rows of Figure 2 represent the average of the topic distributions for documents with the label
found in that row. Notice also that between the ML optima and the MAP optima, the topics have
subtly shifted, as if to enable sparser topics. For example, ‘republican’ shifts into the leading terms
of the ‘law’ basis, allowing religion to find a sparser topic distribution.

5 Conclusion

Many probabilistic inference problems such as PLSI are constrained in their `1 norm, making tra-
ditional `1 regularization toothless for sparse inference. In this work, we have presented a well-
motivated concave regularization for topic models, and described it’s corresponding prior distribu-
tion, a close but novel relative of the symmetric Dirichlet distribution that we term the Bounded
pseudo-Dirichlet. Using this prior for MAP estimation encourages the selection of sparse topic
models, which we demonstrate via an application of our MAP algorithm for text mining, where we
observe qualitatively impressive results.
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Figure 2: Comparison of ordinary PLSI to PLSI regularized with a Bounded pseudo-Dirichlet prior
to induce sparsity, with the regularization parameter ε = 0.02.
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