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Abstract—In this work, we introduce an algorithm for learning
written multi-stroke gesture sequences, with motivation towards

natural robot control. We briefly survey the current research
in the field of gesture recognition and describe the overall

approach we have taken. We describe the feature sets used
and discuss several supervised learning techniques for the clas-

sification problem. We ultimately use a probabilistic multiclass
classifier to label multi-stroke gestures, single strokes, and stroke

transitions, which achieved average accuracies of 97.5%, 83.4%
and 75.4%, respectively. Using combinations of these probabilistic

classifiers, we introduce a heuristic tree search algorithm for
reconstructing multi-stroke gesture sequences. For sequences of

up to ten strokes, our algorithm achieved greater than 88%
average accuracy, which is comparable to existing literature.

I. INTRODUCTION AND MOTIVATION

Our goal in this project is to implement a robust, intuitive

mechanism for the control of a fleet of ground robots. Cornell

is competing in the MAGIC 2010 competition in Australia

in November 2010, and we expect that this interface will

play a part in that implementation. We use machine learning

techniques to identify written gestures, as well as heuristic

tree search algorithm in order to identify those gestures in a

sequence. Much research has been done on both character and

word recognition, and we leveraged that knowledge base to

implement a series of gestures used in concert. We have built

a generic framework that can recognize complex commands

(but not yet map them to actions) in series, and in future work

we expect to implement the ultimate goal of a feature rich,

intuitive, and robust interface for robotic control.

II. OVERVIEW OF APPROACH

Many modes of communication have been devised to

communicate human commands to machines, specifically

robots. Chief among them is the keyboard and mouse due

to their ability to handle the breadth of commands. The

limitation of both the keyboard and mouse is their artificial

nature. Humans are more skilled at communication with

other humans using other methods, such as diagrams and

gestures. The difficulty with communicating with machines

via diagrams and gestures is the inability to accurately

distinguish thier meanings, especially when humans never

perform them exactly the same twice. Another difficulty is

encountered when gestures are inherently vastly different from

one instance to the next, as in the case of path specification.

While research has been done on commanding robots using

written gesture commands, the focus has been exclusively on

navigation commands such as paths and goal points [1], [2].

Additionally, [2] use at most three gestures for the entirety

of their interaction with their robots. We wish to achieve a

more robust and capable system that can communicate high

level commands intuitively to semi-autonomous robots, as

well as low-level explicit commands when appropriate. We

plan on achieving comparable results to [2] initially, but with

a more robust framework. One crutch both [1], [2] used is

hard coding gestures, such as X’s and paths. They could

not handle more than single strokes, with the one exception

of an X, which was defined as two single stroke gestures

that intersect. [1] were successfully able to dictate formation

commands to a small group of robots using this interface

on a PDA. They used a library of 4 gesture commands

(pre-recorded route shapes), with one additional command to

specify the formation configuration. [1] had no capability to

utilize combinations of characters, and depended entirely on

single character recognition.

A secondary goal is to design a system capable of

recognizing new gestures with a minimal number of examples

without sacrificing quality. Yang and Xu [3] used Hidden

Markov Models (HMM) to achieve 99.78% accuracy with

100 samples per gesture, and 91.65% accuracy with just 10

samples per gesture! The gestures they used were the written

form of the numbers 1–9.

Several early commercial character recognizers including

Grafitti (palm) [13] and ANPR (Apple) [14] that came out

in the 90’s were quite successful, but limited, and have since

been discontinued. CalliGrapher (by PhatWare) that remains

somewhat successful (their iPhone App WritePad has 2.5 out

of 5 stars with over 3000 reviews) [15]. There are many more

recent commercially available software, but text recognition

remains largely excluded from everyday interfaces between

machines and humans. The primary algorithms used for ges-

ture recognition in the literature are HMMs [1], [3], [4], [6],

[8], [9], [11], [12], neural networks [5], [10], and sometimes

both [7]. As we will discuss in detail later on, these techniques

rely on some simplifications of the problem of gesture and

word recognition that we wish to overcome. While the prob-

lems successfully addressed using HMMs and neural networks

are in many ways similar to the problem we address here, the

added complication of multi-stroke gestures and ambiguous

gesture starts and ends prompted us to choose a different

approach. The algorithm we present here is a combination of

Sparse Multinomial Logistic Regression (SMLR, pronounced

“smaller”) and heuristic tree searching.



Fig. 1. Example gestures collected. A total of 80 data points per gesture
were used for training and 80 for testing.

III. DATA SET AND FEATURES

In our work we used ten written gestures from two users

(shown in Figure 1), where each is assumed to represent a

unique command, with no relation to the other gestures in the

sentence (future work will address inter-gesture correlations).

Most of these gestures are composed of a variable number

of pen strokes, the number and style of which are not rigidly

enforced.

During training it is possible to isolate exactly which

strokes belong to which gesture, but in the application of a

gesture command interface the aggregation of strokes into

gestures becomes part of the problem itself. We cannot

directly observe the start and end of each gesture; we can

only infer separation between gestures from the shape of their

component pen strokes.

As an analogy of the problem, imagine that each pen stroke

is a letter, each gesture is a word, and a series of gestures

makes a sentence. To illustrate the combinatorial nature of

aggregating pen strokes into valid gestures, consider a sentence

without spaces, such as “ISHOTSOUP”. Just as “IS HOT

SOUP” and “I SHOT SO UP” are both valid segmentations of

the sentence, the written gestures we chose can have similar

pen strokes among neighboring gestures in sequence. To

address this we learn three different classifiers associated with

gestures, strokes, and stroke transitions, which are described

in the next sections. An example of a sequence can be seen in

Figure 2. Each color represents a single stroke, with the first

stroke always designated with a “same” indicator.

A. Gesture Features

As explained in Section II, handwritten gesture recognition

has been extensively studied and many feature sets have

been developed for similar problems. For our gestures, we

have adopted a portion of the g-48 set presented in [17] and

[18]. The g-48 set contains 48 features computed from a

global gesture trajectory, and are generally well-suited for

multiple-stroke gestures (only 42 features from this set were

used). Please refer to [17] for more details on this feature set.

Fig. 2. An example gesture sequence with seven strokes. Classifying gestures
first requires that individual strokes are combined appropriately.

In addition to the g-48 feature set, we employed another

set of features using histogram of tangents, or “HoT features”

(please refer to the midterm report for a detailed description of

HoT features). Nine additional features corresponding to initial

orientation angles, the amount of time spent drawing each

gesture, the total number of strokes, and cw/ccw orientation

indicators complete the feature set. In all, 99 features were

used for learning gesture type.

B. Stroke Features

To identify stroke type (i.e. which gesture type a single

stroke belongs to), we used the same features as described

in Section III-A (with the exception of number of strokes).

Note that some strokes may “obviously” belong to a particular

gesture type, especially those that are themselves a full gesture,

such as spirals. Other strokes, especially straight lines, may

easily belong to several gesture types and we should not expect

them to be correctly classified reliably. In the results presented

in Section V-B, we will see that this is in fact the case.

C. Stroke Transition Features

As explained in Section III, learning gesture sequences is

a hard problem when the gestures transitions are not known.

This requires us to learn simultaneously where gesture

transitions are and what the gesture types are, resulting in a

(worst case) combinatorial search. To help “rule out” unlikely

gesture transitions we have defined nine stroke transition

features, calculated from consecutive strokes (such as time

elapsed between drawing strokes, relative position of strokes,

etc.). If both strokes belonged to the same gesture the stroke

transition was labeled as that gesture class, and if the strokes

belonged to different gestures the stroke transition was labeled

as new gesture.

Like strokes, we would expect some stroke transitions

to be more easily classified than others. For example, an

important gesture consists of a vertical line and a dot

directly below the line. We would expect the consistency of

this interstroke relationship to help classify two consecutive

important-strokes as belonging to the same important

gesture.



IV. CLASSIFICATION

Once features have been extracted from our data, we are

ready to train our classifier. Of course there are many different

classifiers available, and they can broadly be separated into

two categories: binary classifiers and multiclass classifiers.

Binary classifiers include Gaussian Discriminant Analysis

[23], Support Vector Machines [24], Relevance Vector

Machines [25], and many others. These classifiers tend to be

simpler and require less training data, but are best applied

to binary classification problems. The problem we are trying

to solve would benefit more from a multiclass classifier. The

most common approach to multiclass classification extends

binary classifiers to the multiclass problem such as the

“one versus all” (OvA) approach, which learns N binary

classifiers (where N is the number of classes). Another option

is the “one versus one” (OvO) approach, in which a binary

classifier is learned for each pairwise combination of classes

(resulting in N(N − 1)/2 classifiers) [26], [27], [28], [29],

[30]. Generalizing binary classifiers to the multiclass problem

has been studied extensively [31], [32], [33], [34]. Some

other multiclass classification techniques include Softmax

[35], Generalized LDA [36], multiple logistic regression [37],

nearest neighbor [38], and decision trees [39], [40].

In the next sections, we briefly discuss three classification

techniques that were evaluated for the midterm report:

Support Vector Machines, Relevance Vector Machines, and

K-Nearest Neighbors. In Section IV-D, we describe the final

multiclass classification method implemented, called Sparse

Multinomial Logistic Regression (SMLR), which was used to

obtain all following results. (Please note that the SVM, RVM

and KNN classifiers were evaluated using a different data

set than SMLR, so classification results can not be directly

compared. They are included here only to demonstrate that

these methods were examined.)

A. Support Vector Machines

Support Vector Machines (SVMs) [41] have been widely

used for classification in many fields, especially for machine

learning tasks such as text categorization [42] and pattern

recognition [43]. SVMs is a supervised learning methods that

constructs a hyperplane in high (or even infinite) dimensional

space to be used for classification or regression. It attempts to

maximize the “functional margin”, i.e. the distance from the

hyperplane to the nearest training datapoints. A “soft margin”

allows for some misclassification, in instances where classes

are not seperable. While SVM is generally a linear classifier,

it can be extended to find nonlinear boundaries using non-

linear kernel functions. For the midterm report, we trained a

linear pairwise SVM classifier on the data (200 data points

from each class were used to train, and 50 to test). The one-

versus-one (pairwise) classifier performed the best, with about

99.67% accuracy on average.

B. Relevance Vector Machines

Relevance Vector Machines (RVMs) have identical func-

tional form to SVMs, but use Bayesian inference to provide

probabilistic classification (which will be useful later when we

implement our HMM) [25], [44]. RVMs can derive accurate

prediction models with fewer basis functions than a compa-

rable SVM. They also output probabilistic predictions, auto-

matically estimate parameters, and allow the use of arbitrary

basis functions. For the midterm report, we trained a Gaussian

pairwise RVM classifier on the data (200 data points from each

class were used to train, and 50 to test), which had comparable

performance to SVM for the pairwise case (average accuracy

of 99.7%).

C. K-Nearest Neighbors

Both SVM and RVM are binary classifiers (although they

can be extended to multiclass classification as discussed in

Section IV), so we have implemented K-Nearest Neighbors

(KNN) as a simple multiclass classifier. KNN is a useful

algorithm when there is no known underlying structure to the

data, but is prone to overfitting and requires an appropriate

distance measure be defined [47]. It also requires that a new

data point be compared to the entire training set (which may be

prohibitively expensive if the data set is large). Because KNN

is very general and can be applied to many different problems,

much work has been done to analyze the appropriateness of

the algorithm [45], [46]. For the midterm report, we ran KNN

on two cases: one nearest neighbor and 5 nearest neighbors.

KNN gave results comparable to SVM and RVM (average

accuracy of 99.5%), while truly being a multiclass classifier.

D. Sparse Multinomial Logistic Regression

Sparse Multinomial Logistic Regression (SMLR) is a

supervised learning algorithm for probabilistic multiclass

classification[52]. There are several advantages to using SMLR

as opposed to other classifiers like SVM and RVM. Unlike

extensions to SVM and RVM, SMLR has a true multiclass

formulation which learns a weight vector w such that the

likelihood of label i for data point x is given by:

P
(

y(i) = 1|x, w
)

=
exp

(

w(i)T x
)

m
∑

j=1

exp
(

w(j)T x
)

As the name implies, SMLR produces a sparse weight

vector by using a Laplacian prior on the weights, and although

calculating the maximum a posteriori (MAP) multinomial

regression with a Laplacian prior scales unfavorably with the

number of bases (which may be very large), the component-

wise update equation has a monotonically increasing closed

form solution. Solving component-wise SMLR results in com-

putation cost and storage requirement linear in the number

of bases. Like RVMs, it uses Bayesian inference to provide

probabilistic classification and can incorporate arbitrary bases,

including non-Mercer kernels, but SMLR converges to a

unique maximum, and is not at risk of local minima as

RVMs are. For these reasons, we have chosen to use Sparse

Multinomial Logistic Regression as our final classification

algorithm, results of which can be found in the next section.



V. CLASSIFICATION RESULTS

A. Gesture Classification

The SMLR gesture classifier was learned on 88 examples

from each class and tested on 53 examples from each class.

Figure 3 shows the confusion matrix for the learned classifier,

which gave an average accuracy of 97.5%. X’s were the most

difficult to detect, with an accuracy of only 91.2%. While

these results are not as good as some gesture recognition

methods in previous literature (discussed in Section VII),

recall that many of our gestures are “flexible,” i.e. don’t have

an underlying template (notably path, zone and wander).

To correctly identify these gesture types, the classifier can’t

necessarily consider only what a gesture looks like, but also

how the gesture was drawn. This is a much harder problem

than classifying gestures such as numbers and letters, which

not only have “template” structures, but are also written

with known orientation. Considering the added complexity of

our problem, we find our results very promising. Note that

baseline (i.e. random) classification would yield 10% accuracy.

The confusion matrix, however, does not tell the

whole story. We are not only interested in the number

of correct/incorrect classifications, we are also concerned

with how confidently the classifier chooses the correct label.

Recall that SMLR gives probabilistic classifications, so

not only do we know the most likely label, but we have

a measure of how likely the label is. Consider the binary

classification problem in which the algorithm outputs highest

likelihood for the correct label 100% of the test data, but

only with probability = 0.51. In other words, the likelihood

of the incorrect label is very close to that of the correct

label. It is not only important that the classifier correctly

label the test data, but also that it does so with high confidence.

Figure 4 shows the average label likelihood calculated by

the gesture classifier. Notice that while it looks very similar

to the confusion matrix, it is not identical. Here, we can see

that the average likelihood calculated for the correct label is

96.9%. The difference between these two matrices will be

more apparent in the next sections.

B. Stroke Classification

The SMLR stroke classifier was learned on single strokes

using 89 examples from each class and tested on 82 examples

from each class. Figure 5 shows the confusion matrix for

the learned classifier, which gave an average accuracy of

83.4%. X-strokes were the most difficult to detect, with an

accuracy of only 56.1%. While these results may seem poor,

recall that this classifier is trying to label the gesture type

of a single stroke. In the case of a straight line, the stroke

could belong to any number of gesture types. In fact, this is

why X-strokes are so difficult to correctly classify. Note that

baseline (i.e. random) classification would yield 10% accuracy.

Again, we can refer to the average likelihoods in Figure 6.

Notice here that X-strokes have highly non-zero likelihoods

associated with triangles and arrows. This makes

sense, as triangles and arrows are often drawn

with a collection of angled straight-line strokes. Similarly,

important-strokes had non-zero likelihoods as boxes,

which are also often drawn using a collection of vertical

straight-line strokes. Despite these expected confusions, the

average likelihood calculated for the correct label is still

81.2%.

It is worth noting that, although this classifier is not always

able to correctly classify the stroke, it is still useful in ruling

out what the stroke isn’t. For example, it may not be possible

to determine whether a straight-line stroke belongs to an X,

triangle or arrow, but the classifier would correctly

yield near-zero likelihoods for circles and spirals.

In Section VI, we will see that this will help the sequence

search algorithm by effectively pruning parts of the search

tree with near-zero probabilities.

Fig. 3. Confusion matrix for gesture classifier, where diagonal elements
represent correctly labeled test data.

Fig. 4. Average calculated gesture class likelihoods, where diagonal elements
represent correct labels.



C. Stroke Transition Classification

The SMLR stroke transition classifier was learned on

seven classes: boxes, triangles, arrows, X, zone,

important and new gestures. The nine-dimensional

feature vector was calculated from consecutive strokes; if

both strokes belonged to the same gesture the stroke transition

was labeled to that gesture class, and if the strokes belonged

to different gestures the stroke transition was labeled as new

gesture. Four gesture types (circle, path, wander

and spiral) were never drawn with more than one stroke,

so these stroke transition likelihoods were set to zero.

The classifier was learned on stroke transitions using

46 examples from each class and tested on 80 examples

from each class. Figure 7 shows the confusion matrix for

the learned classifier, which gave an average accuracy of

75.4%. Notice now, X-stroke transitions are the easiest to

classify with an accuracy of 87.7%, as users tend to draw

these gestures very consistently. Note that baseline (random)

classification would yield 14.3% accuracy.

Fig. 5. Confusion matrix for stroke classifier, where diagonal elements
represent correctly labeled test data.

Fig. 6. Average calculated stroke class likelihoods, where diagonal elements
represent correct labels.

Here, we can clearly see the difference between Figures 7

and 8. Although stroke transitions were correctly classified

75.4% of the time, the average likelihood of correct

classification was only 65.1%. This indicates that there are

many cases where the classifier outputs the correct label,

but the classification likelihood is significantly less than 1.

This may indicate that different features are needed to better

distinguish between labels.

VI. LEARNING SEQUENCES OF GESTURES

As alluded to in Section III, even the best gesture classifier

can only be effectively applied once the transitions between

each gesture have been identified. This is in itself very

difficult, because there is no indicator for the beginning and

end of gestures, only pen strokes. To simultaneously define

gesture transitions and classify gestures, we apply a heuristic

tree search method to find the maximum likelihood gesture

sequence by examining successive strokes, and searching

only the most likely paths.

Fig. 7. Confusion matrix for stroke transition classifier, where diagonal

elements represent correctly labeled test data.

Fig. 8. Average calculated stroke transition class likelihoods, where diagonal
elements represent correct labels.



Starting with the first stroke, there M possible classes the

stroke may belong to, represented as nodes in a tree. Using

the stroke classifier described in Section V-B, calculate the

likelihood L that the stroke belongs to a particular gesture

type GT and assign to the respective node. Find the leaf

node i with the highest probability, and “expand” that node

by looking at the next stroke in the sequence. That stroke

may either belong to the same gesture as i or to a new

gesture, creating M + 1 child nodes from i. For each child

node k calculate L (k, Ak), the likelihood of the whole stroke

sequence up to node k (Ak are the ancestors of node k),

using the appropriate gesture, stroke, and stroke transition

classifiers. Repeat this process by expanding the highest

likelihood leaf node (i.e. nodes that have not already been

expanded) until the highest likelihood leaf node corrseponds

to the last stroke. This algorithm is known as a best first

search and is guaranteed to find the optimal sequence (where

“optimal” is defined as the highest likelihood). Please refer to

the pseudo-code presented in Algorithm 1 for details. Here,

Gi is the sequential gesture number of node i.

The likelihood of a sequence up to node i, Li, is the

product of stroke, gesture, and stroke transition probabilities as

defined by the stroke labels. It is intuitive that as the sequence

gets longer, its aggregate likelihood will decrease (as we are

multiplying numbers ≤ 1 – or adding numbers ≤ 0 in the

case of log-likelihoods). This has the undesirable effect of

encouraging the algorithm to perform breadth-first-search (this

is worst-case for trees with constant depth)! Therefore, we

implement a heuristic to “penalize” nodes closer to the top of

the tree:

L′

i = Li ·

(

Ni

N

)α

where Ni is the stroke number of node i, N is the total

length of the sequence, and α is a number between 0 and 1.

(Note: L here is a log-likelihood.) This heuristic encourages a

more depth-first-search behavior, but sacrifices the guarantee

of optimality. The effect of this heuristic is evaluated in Section

VI-B.

A. Performance and Error Metrics

Two performance metrics are used to evaluate the efficiency

and effectiveness of the gesture sequence learning algorithm:

(1) the number of misclassified strokes, and (2) the number

of nodes explored in the tree search. A stroke is considered

misclassified once if it’s gesture type is incorrect and

again if it is considered part of a new gesture when it is

actually a continuation of the previous gesture (or vise-versa).

These errors measure the accuracy of the algorithm as a whole.

The number of nodes explored in the tree search measures

the computational efficiency of the algorithm. While the

worst-case search will yield a search of M (M + 1)
N−1

nodes (where M is the number of gesture types and N is the

number of strokes), this can become an infeasible search for

long sequences. Even if the search is feasible, it may not be

possible to perform in real time. However, if the individual

Algorithm 1 Finding the optimal stroke sequence

k = 0
leaf nodes = ∅
for all j ∈ GT do

create new node k = k + 1
set Aj = ∅, Nk = 1, Gk = 1, GTk = GT (j)
evaluate L′

k = L (k) ·
(

1
N

)α

add k to leaf nodes

end for

find i such that L′

i = max(L′

n) where n ∈ leaf nodes

while Ni < N do

for all j ∈ GT do

create new node k = k + 1
set Ak = [Ai, i]
set Nk = Ni + 1, Gk = Gi + 1, GTk = GT (j)
evaluate L′

k = L (k, Ak) ·
(

Nk

N

)α

add k to leaf nodes

end for

create new node k = k + 1
set Ak = [Ai, i]
set Nk = Ni + 1, Gk = Gi, GTk = GTi

evaluate L′

k = L (k, Ak) ·
(

Nj

N

)α

add k to leaf nodes

remove i from leaf nodes

find i such that L′

i = max(L′

n) where n ∈ leaf nodes

end while

return Ai

Fig. 9. An example 5-stroke sequence (top), reconstructed correctly by both

the optimal search algorithm in 300 nodes (left), and the penalized search
algorithm in 130 nodes (right).

classifiers (described in the previous sections) are “good

enough,” they will have a similar effect as tree pruning, where

branches with low likelihoods are never explored. The hope

is that the tree can be searched fast enough to allow real-time

evaluation of stroke sequences, since we aim to use them to

control robots.



Figure 9 illustrates an example of a 5-stroke sequence. The

worst-case search for this sequence would require a search

of 146,410 nodes. However, even without a penalty term the

algorithm is able to find the maximum likelihood sequence

by searching under 300 nodes. Using an aggressive penalty

term of α = 1 the algorithm is able to find the same sequence

by searching only 130 nodes!

B. Sequence Reconstruction Results

77 different gesture sequences, ranging from 3–10

strokes, were reconstructed using different penalty values

(α ∈ {0, 0.1, 0.5, 1.0}). Recall that a higher penalty promotes

depth searching when node likelihoods at different depths

in the tree are similar. Average accuracy and percent of tree

searched are plotted in Figures 10 and 11, respectively.

With no penalty (α = 0), the sequence reconstruction

algorithm yielded an average accuracy of 93.2%. For short

sequences (3 strokes), an average accuracy of 97.6% was

obtained. Even with an aggressive penalty (α = 1), the

algorithm yielded an average accuracy of 92.6% accuracy.

For short sequences (3 strokes), an average accuracy of

97.6% was obtained. Note that baseline (random) sentence

reconstruction of a 3-stroke sequence will yield an accuracy

of 0.8%. With no penalty, an average of 0.55% of the total

search tree was evaluated for the 77 test cases (maximum of

11.4%). For α = 1, an average of 0.37% of the total search

tree was evaluated for these test cases (maximum of 3.7%).

Figures 10 and 11 suggest that while adding a penalty

term decreases the sequence reconstruction accuracy slightly

(this is expected, as we are no longer guaranteed to find the

maximum likelihood sequence), it decreases the computational

cost significantly. It may be reasonable to use a small penalty

term (α = 0.1) to help avoid breadth-first-search behavior

without sacrificing much accuracy.

It should be noted that our search strategy is prone to

cascading errors. In other words, if a stroke is misclassified,

there is a greater chance that the subsequent stroke(s) may

also be misclassified. Imagine that the first of two X-strokes

is incorrectly classified as an arrow. The next stroke

(the second X-stroke) will either be classified as a new X

(one error), same arrow (one error), or new *** where

“***” is not an X (two errors). Because the first stroke was

misclassified, the second stroke will necessarily be (at least

partially) misclassified.

The computational complexity of our algorithm is also

sensitive to stroke sequencing. Since we are employing a tree

search (with a large branching factor), a difficult-to-classify

node towards the top of the tree may cause much more of

the tree to be explored than if the same node were toward

the bottom of the tree. This may be partially alleviated by

choosing a different heuristic or by performing a bidirectional

search.

Fig. 10. Percent stroke error of sequence reconstruction using heuristic tree
search algorithm with varying penalty terms.

Fig. 11. Percent of total tree searched using heuristic tree search algorithm
with varying penalty terms.

VII. COMPARISON TO EXISTING LITERATURE

As discussed in Section II, the field of gesture recognition

is hardly new. Here, we briefly compare our results to some

closely-related existing literature.

In [48], the authors examined a similar problem as ours

within the context of recognizing hand-drawn circuit diagrams.

Addressing the issues of segmentation and stroke recognition

using Dynamic Bayesian Networks, their algorithm yielded

an average accuracy of 92%, which is comparable to our

sequence reconstruction results. While [48] addressed the

problem of interspersed drawings (making the combinatorial

problem discussed in Section VI significantly more difficult

than in our case), they are able to rely more heavily on spatial

relationships between gestures. The circuit gestures (resistors,

transistors, etc.) in [48] are also not “flexible”, although their

gesture recognition did have to handle variability in size and

orientation.

The multi-stroke icon recognition problem presented in

[17] is most similar to our gesture recognition problem, and

in fact we used many of the features devised by the authors.

Their average accuracy was 95% with various icon datasets,

some of which which were arguably more complicated than

the 10 gestures we studied. We achieved an accuracy of



97.5% using significantly fewer training examples, however,

and the gestures in [17] had fixed orientations, whereas ours

were not constrained to a particular orientation (except the

important gesture).

With respect to application, the authors of [2] also present

robot control as motivation for written gesture recognition.

While the experiments in [2] are very similar to the end goal

that we hope to achieve, we believe that our framework allows

for a superior interface to emerge. [2] used a very limited set of

rigidly-defined gestures, and the focus was almost exclusively

on the integration between gesture and robot (i.e. after the

gesture has been recognized, how to control the robot), rather

than the gesture recognition itself. We emphasize the need to

be able to handle a multitude of command gestures (and even

learn new ones easily) in order to create an expressive gesture

environment.

VIII. DISCUSSION AND CONCLUSIONS

While the results presented in Sections V-VII are promising,

there are still several things that can be done to improve

accuracy and reduce computational complexity. First, we can

add an other gesture, composed of a colelction of strokes

that does not make any gesture. This will be helpful when

determining whether a stroke transition is inter-gesture or

intra-gesture. For example, imagine a group of strokes is

being run through the gesture classifier. The collection of

strokes may not resemble any gesture at all, but it will still

be classified as something with a minimum probability of

1/M . By adding an other gesture, it will allow a sequence

of strokes to have low probability for all gesture types. We

predict that this will greatly improve sentence reconstruction.

Another way to improve classification accuracy would be

to change the features used. Specifically, we would like to

examine how a kernel basis function affects accuracy. This

may greatly increase computation (if the number of samples

is large), but increased accuracy may be worth the added

complexity. Using Gaussian kernels centered around data

points may also provide a more robust writing style.

The best-first-search approach we presented in Section VI

is certainly not the only way to do sequence reconstruction,

especially in terms of computational complexity. Recalling

that the worst-case search will require examination of

M (M + 1)
N−1

nodes, this technique may not even be

feasible for long sequences of strokes. One way to improve

computational efficiency is to use a different search heuristic.

For example, an A* search uses an optimistic search heuristic

that still guarantees optimality.

One thing we did not discuss in this paper (although it was

presented in the midterm report) is dimensionality reduction.

For the midterm report, we used PCA to reduce the feature

dimensionality from 98 to 44 while maintaining 90% of the

data variance. Due to time constraints, we did not do an

analysis of dimensionality reduction using SMLR for this

paper. One should note, however, that the sparsity promoting

priors of SMLR lend itself naturally to dimensionality

reduction. After training the classifier, bases that have zero

weights (for all classes) are not used by the classifier and

can be ignored when collecting new data. If these bases

correspond to actual features, this may give some intuition

about what features are useful for distinguishing between

classes. If the bases correspond to kernels centered around

training data, it may indicate a set of “template” gestures.

Lastly, incorporating environmental information (by adding

to the feature set) could provide invaluable information. If

we use this algorithm to send controls to robot teams (as

we plan to do), information about the environment, such

as where a gesture is drawn with respect to a robot, can

be extremely helpful for segmenting stroke sequences into

gestures that make sense. Additionally, we can incorporate

priors on gesture transitions that are application-specific. For

example, if a circle translates to “select this robot,” and an

arrow means “travel to this location,” there may be a high

probability of an arrow immediately following a circle.

This is information we ignored for this project, but plan to

incorporate in future work.

IX. FUTURE WORK

We plan to build on the framework we have developed

to implement a comprehensive interface for reliable and

natural robotic control in the coming months. We will focus

on improving the recognition rates of full sentences by

refining the feature set. We also plan on enhancing the tree

search algorithm’s speed (without sacrificing optimality)

by improving our heuristic function. When connecting the

interface to a robot collective, each gesture will represent

some (possibly abstract) command from a human user to

the robot team, as well as the level of autonomy expected.

For example an arrow may mean “Go to this location by

any path you’d like,” whereas a path may mean “Go to

this location by taking this specific route.” This requires

that the gestures be translated into some useable form and

will take a significant amount of development, but we hope

to achieve this by next summer. To translate the gestures,

we will make use of Dr. Kress-Gazit’s work in Linear

Temporal Logic (LTL) [49], [50], [51]. LTL has the ability to

capture typical control specifications such as reachability and

invariance, as well as complex specifications like sequencing

and obstacle avoidance. It is our hope that the generation of

these controllers using a handwritten gesture interface will be

functional for the MAGIC 2010 competition next November.

The “Holy Grail” of this research is to incorporate proba-

bilistic interpretations of human input into the LTL framework,

which is rigid by definition. For example, the following

questions are posed: What should the robot do if it is only

80% confident in the translation? What if the user commands

something that is impossible (“breaks” another LTL rule)?

What if the user’s command is ambiguous? These questions

are hard (but very interesting!) problems that we hope to

address in the future.
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