An Empirical Comparison of Learning Methods++

Rich Caruana
Cornell University

joint work with Alex Niculescu, Cristi Bucila, Art Munson

Sad State of Affairs: Supervised Learning

- Linear/polynomial Regression
- Logistic/Ridge regression
- K-nearest neighbor
- Linear perceptron
- Decision trees
- SVMs
- Neural nets
- Naïve Bayes
- Bayesian Neural nets
- Bayes Nets (Graphical Models)
- Bagging (bagged decision trees)
- Random Forests
- Boosting (boosted decision trees)
- Boosted Stumps
- ILP (Inductive Logic Programming)
- Rule learners (C2, …)
- Ripper
- Gaussian Processes
- …

Each algorithm has many variations and free parameters:
- SVM: margin parameter, kernel, kernel parameters (e.g. gamma), …
- ANN: # hidden units, # hidden layers, learning rate, momentum, …
- DT: splitting criterion, pruning options, smoothing options, …
- KNN: K, distance metric, distance weighted averaging, …

Must optimize to each problem:
- failure to optimize makes superior algorithm inferior
- optimization depends on criterion
 - e.g., for kNN: $k_{\text{optimal}} \neq k_{\text{random}} \neq k_{\text{large}}$
- optimization depends on size of train set

Questions

- Is one algorithm “better” than the others?
- Are some learning methods best for certain loss functions?
 - SVMs for classification?
 - ANNs for regression or predicting probabilities?
- If no method(s) dominate, can we at least ignore some algs?
- Why are some methods good on loss X, but poor on loss Y?
- How do different losses relate to each other?
- Are some losses “better” than others?
- …
- What should you use ???
Data Sets

- 8 binary classification data sets (now 10 sets)
 - Adult
 - Cover Type
 - Letter.p1
 - Letter.p2
 - Pneumonia
 - Hyper Spectral
 - SLAC Particle Physics
 - Mg

- 4 k train sets
- 1 k validation sets
- Large final test sets (usually 20k)

Binary Classification Performance Metrics

- **Threshold Metrics:**
 - Accuracy
 - F-Score
 - Lift

- **Ordering/Ranking Metrics:**
 - ROC Area
 - Average Precision
 - Precision/Recall Break-Even Point

- **Probability Metrics:**
 - Root-Mean-Squared-Error
 - Cross-Entropy
 - Probability Calibration

Normalized Scores

- **Small Difficulty:**
 - some metrics, 1.00 is best (e.g. ACC)
 - some metrics, 0.00 is best (e.g. RMS)
 - some metrics, baseline is 0.50 (e.g. AUC)
 - some metrics, best depends on data (e.g. Lift)
 - some problems/metrics, 0.60 is excellent performance
 - some problems/metrics, 0.99 is poor performance

- **Solution: Normalized Scores:**
 - baseline performance => 0.00
 - best observed performance => 1.00 (proxy for Bayes optimal)
 - puts all metrics/problems on equal footing

Massive Empirical Comparison

10 learning methods

100's of parameter settings per method

5-fold cross validation

10,000+ models trained per problem

10 Boolean classification test problems

100,000+ models

9 performance metrics

900,000+ model evaluations
Look at Predicting Probabilities First

- Why?
 - don’t want to hit you with results for nine metrics all at once
 - if you can predict correct conditional probabilities, you’re done—all reasonable performance metrics are optimized by predicting true probabilities
 - results for probabilities are interesting by themselves*

* Alex Niculescu won a best student paper award at ICML05 for this work on predicting probabilities

Results on Test Sets (Normalized Scores)

- Best probabilities overall:
 - Neural Nets
 - Bagged Decision Trees
 - Random Forests

- Not competitive:
 - Boosted decision trees and stumps (exponential loss)
 - SVMs (standard hinge-loss)

- SVMs scaled to [0,1] via simple min/max scaling

Bagged Decision Trees

- Draw 100 bootstrap samples of data
- Train trees on each sample -> 100 trees
- Un-weighted average prediction of trees

Bagging Results

- Highly under-rated!
Random Forests (Bagged Trees++)

- Draw 1000+ bootstrap samples of data
- Draw sample of available attributes at each split
- Train trees on each sample/attribute set -> 1000+ trees
- Un-weighted average prediction of trees

<table>
<thead>
<tr>
<th>Model</th>
<th>Probability Metrics</th>
<th>Cross-Entropy</th>
<th>Squared Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>0.872 0.878 0.326 0.859</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAG-RF</td>
<td>0.875 0.901 0.677 0.884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVM-1FR</td>
<td>0.882 0.899 0.917 0.783</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KNN</td>
<td>0.783 0.799 0.884 0.745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOG-REG</td>
<td>0.814 0.830 0.878 0.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.583 0.616 0.512 0.576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFR</td>
<td>0.096 0.090 0.045 0.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SVRMIX</td>
<td>0.484 0.447 0.080 0.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUS-RELMP</td>
<td>0.355 0.320 0.320 0.272</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAIVE-R</td>
<td>0.271 0.300 0.100 0.100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Back to SVMs: Results on Test Sets

- Best probabilities overall:
 - Neural Nets
 - Bagged Probabilistic Trees
 - Random Forests

- Not competitive:
 - Boosted decision trees and stumps (with exponential loss)
 - SVMs (with standard loss)

SVM Reliability Plots

- Calibration & Reliability Diagrams
Platt Scaling by Fitting a Sigmoid

- Linear scaling of SVM \([-\infty, +\infty]\) predictions to \([0,1]\) is bad.
- Platt’s Method [Platt 1999]:
 - scale predictions by fitting sigmoid on a validation set using 3-fold CV and Bayes-motivated smoothing to avoid overfitting.

![Graph showing Platt Scaling by Fitting a Sigmoid]

Results After Platt Scaling SVMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>F-Score</th>
<th>Lift</th>
<th>ROC Area</th>
<th>Average Precision</th>
<th>Break Even Point</th>
<th>Squared Error</th>
<th>Cross-Entropy</th>
<th>Calibration</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>0.817</td>
<td>0.875</td>
<td>0.947</td>
<td>0.963</td>
<td>0.956</td>
<td>0.829</td>
<td>0.872</td>
<td>0.878</td>
<td>0.826</td>
<td>0.892</td>
</tr>
<tr>
<td>SVM-PLT</td>
<td>0.823</td>
<td>0.851</td>
<td>0.958</td>
<td>0.961</td>
<td>0.951</td>
<td>0.829</td>
<td>0.882</td>
<td>0.880</td>
<td>0.769</td>
<td>0.844</td>
</tr>
<tr>
<td>RF</td>
<td>0.836</td>
<td>0.889</td>
<td>0.933</td>
<td>0.972</td>
<td>0.950</td>
<td>0.828</td>
<td>0.875</td>
<td>0.901</td>
<td>0.817</td>
<td>0.878</td>
</tr>
<tr>
<td>BAG-DT</td>
<td>0.844</td>
<td>0.845</td>
<td>0.918</td>
<td>0.977</td>
<td>0.957</td>
<td>0.904</td>
<td>0.882</td>
<td>0.899</td>
<td>0.904</td>
<td>0.907</td>
</tr>
<tr>
<td>KNN</td>
<td>0.759</td>
<td>0.830</td>
<td>0.914</td>
<td>0.957</td>
<td>0.983</td>
<td>0.888</td>
<td>0.783</td>
<td>0.789</td>
<td>0.664</td>
<td>0.831</td>
</tr>
<tr>
<td>RST-DT</td>
<td>0.861</td>
<td>0.885</td>
<td>0.956</td>
<td>0.977</td>
<td>0.958</td>
<td>0.952</td>
<td>0.996</td>
<td>0.998</td>
<td>0.145</td>
<td>0.758</td>
</tr>
<tr>
<td>DT</td>
<td>0.612</td>
<td>0.789</td>
<td>0.856</td>
<td>0.781</td>
<td>0.848</td>
<td>0.808</td>
<td>0.583</td>
<td>0.638</td>
<td>0.512</td>
<td>0.717</td>
</tr>
<tr>
<td>BAG-STMP</td>
<td>0.701</td>
<td>0.782</td>
<td>0.808</td>
<td>0.826</td>
<td>0.871</td>
<td>0.854</td>
<td>0.355</td>
<td>0.399</td>
<td>0.125</td>
<td>0.670</td>
</tr>
<tr>
<td>LOG-REG</td>
<td>0.802</td>
<td>0.823</td>
<td>0.829</td>
<td>0.849</td>
<td>0.752</td>
<td>0.714</td>
<td>0.614</td>
<td>0.620</td>
<td>0.678</td>
<td>0.696</td>
</tr>
<tr>
<td>NAVS-R</td>
<td>0.414</td>
<td>0.627</td>
<td>0.746</td>
<td>0.767</td>
<td>0.698</td>
<td>0.689</td>
<td>0.271</td>
<td>0.200</td>
<td>0.00</td>
<td>0.409</td>
</tr>
</tbody>
</table>

* Boosted trees outperform everything else on 5 of 6 non-probability metrics.
* But boosting predicts poor probabilities.

Results After Platt Scaling SVMs

<table>
<thead>
<tr>
<th>Model</th>
<th>Squared Error</th>
<th>Cross-Entropy</th>
<th>Calibration</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>0.872</td>
<td>0.878</td>
<td>0.826</td>
<td>0.859</td>
</tr>
<tr>
<td>SVM-PLT</td>
<td>0.882</td>
<td>0.880</td>
<td>0.769</td>
<td>0.844</td>
</tr>
<tr>
<td>BAG-DT</td>
<td>0.875</td>
<td>0.901</td>
<td>0.637</td>
<td>0.904</td>
</tr>
<tr>
<td>BAG-FOB</td>
<td>0.882</td>
<td>0.899</td>
<td>0.507</td>
<td>0.783</td>
</tr>
<tr>
<td>KNN</td>
<td>0.783</td>
<td>0.769</td>
<td>0.684</td>
<td>0.745</td>
</tr>
<tr>
<td>LOG-REG</td>
<td>0.614</td>
<td>0.620</td>
<td>0.678</td>
<td>0.637</td>
</tr>
<tr>
<td>DT</td>
<td>0.783</td>
<td>0.636</td>
<td>0.512</td>
<td>0.578</td>
</tr>
<tr>
<td>RST-DT</td>
<td>0.596</td>
<td>0.596</td>
<td>0.045</td>
<td>0.413</td>
</tr>
<tr>
<td>SVM-AKA</td>
<td>0.484</td>
<td>0.447</td>
<td>0.000</td>
<td>0.510</td>
</tr>
<tr>
<td>RST-STMP</td>
<td>0.355</td>
<td>0.330</td>
<td>0.123</td>
<td>0.272</td>
</tr>
<tr>
<td>NAVS-R</td>
<td>0.271</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* Platt’s Method (Platt 1999) for obtaining posterior probabilities from SVMs by fitting a sigmoid.
* SVM probabilities as good as Neural Net probabilities after scaling with Platt’s Method.
* SVMs slightly better than Neural Nets on 2 of 3 metrics!
* Would other learning methods benefit from calibration with Platt’s Method?
Summary of Model Performances

<table>
<thead>
<tr>
<th>Model</th>
<th>Best Count</th>
<th>Mean NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>17</td>
<td>0.892</td>
</tr>
<tr>
<td>SVM-PLT</td>
<td>2</td>
<td>0.884</td>
</tr>
<tr>
<td>BAG-DT</td>
<td>13</td>
<td>0.878</td>
</tr>
<tr>
<td>RND-FOR</td>
<td>4</td>
<td>0.875</td>
</tr>
<tr>
<td>KNN</td>
<td>6</td>
<td>0.831</td>
</tr>
<tr>
<td>BST-DT</td>
<td>19</td>
<td>0.738</td>
</tr>
<tr>
<td>DT</td>
<td>2</td>
<td>0.717</td>
</tr>
<tr>
<td>BST-STMP</td>
<td>7</td>
<td>0.650</td>
</tr>
<tr>
<td>LOG-REG</td>
<td>1</td>
<td>0.696</td>
</tr>
<tr>
<td>NAIVE-B</td>
<td>1</td>
<td>0.460</td>
</tr>
</tbody>
</table>

Good Model ≠ Good Probs

- Model can be accurate, but be poorly calibrated
 - Only sensitive to side of threshold case falls on
 - Use threshold ≠ 0.5 if poorly calibrated

- Model can have good ROC (Google-like ordering), but predict poor probabilities
 - ROC insensitive to scaling/stretching
 - Only ordering has to be correct, not probabilities

Ada Boosting

- **Initialization:**
 - Weight all training samples equally

- **Iteration (typically requires 100’s to 1000’s of iterations):**
 - Train model on (weighted) train set
 - Compute error of model on train set
 - Increase weights on cases model gets wrong

- **Return final model:**
 - Carefully weighted prediction of each model

Why Boosting is Not Well Calibrated

- Predicted values pushed away from 0 and 1
- Calibration becomes increasingly worse
- Shape of the reliability plot becomes sigmoidal
- Looks a lot like SVM predictions
Consistent With Interpretations of Boosting

- Boosting is a maximum-margin method (Schapire et al. 1998, Rosset et al. 2004)
 - Trades lower margin on easy cases for higher margin on harder cases

- Boosting is an additive logistic regression model (Friedman, Hastie and Tibshirani 2000)
 - Tries to fit the logit of the true conditional probabilities

- Boosting is an equalizer (Breiman 1998) (Friedman, Hastie, Tibshirani 2000)
 - Weighted proportion of times example is misclassified by base learners tends to be the same for all training cases

Results After Platt Scaling All Models

- Models that benefit from calibration:
 - SVMs
 - Boosted decision trees
 - Boosted stumps
 - Random forests
 - Naive Bayes
 - Vanilla decision trees

- Do not benefit from calibration:
 - Neural nets
 - Bagged trees
 - Logistic regression
 - MTL-KNN

- Boosting full trees dominates

Platt Scaling of Boosted Trees (7 problems)

Before (Ada Boost with exponential loss): P1 P2 P3 P4 P5 P6 P7

After Platt Scaling: P1 P2 P3 P4 P5 P6 P7

Models that benefit from calibration:
- SVMs
- Boosted decision trees
- Boosted stumps
- Random forests
- Naive Bayes
- Vanilla decision trees

Do not benefit from calibration:
- Neural nets
- Bagged trees
- Logistic regression
- MTL-KNN

Boosting full trees dominates

Return of the Decision Tree!

- After Platt Scaling, boosted trees are best models overall across all metrics
- Neural nets are best models overall if no calibration is applied post-training
Methods for Achieving Calibration

- **Optimize directly to appropriate criterion:**
 - Boosting with log-loss (Collins, Schapire & Singer 2001)
 - SVM to maximize likelihood (e.g. Wahba 1999)
 - Performance comparable to Platt Scaling (Platt 1999)
 - Yields non-sparse solution
 - No need for post-training calibration with these approaches

- **Train models with “usual” criterion and post-calibrate:**
 - Logistic Correction
 - Analytic method justified by the Friedman et al.’s analysis
 - Platt Scaling
 - Method used by Platt to calibrate SVMs by fitting a sigmoid
 - Is sigmoid right calibration function for most learning methods?
 - Isotonic Regression
 - Very general calibration method used by Zadrozny & Elkan (2001)
 - PAV (Pair Adjacent Violators) algorithm (Ayer et al. 1955)
 - Efficient linear-time algorithm

Boosting with Log-Loss

- Log-loss does improve calibration of boosting, but
- Most effective with weak models such as 1-level stumps
- Less effective with more complex models such as full decision trees (or even 2-level stumps)
- Post-calibration with Platt’s Method far more effective, particularly with complex models such as full trees
- Best probabilities come from full trees boosted with exponential loss then calibrated with Platt’s Method

Isotonic Regression

- Basic assumption - there exists an isotonic (monotonically increasing) function \(m \) s.t.:
 \[
 y_i = m(f_i) + \epsilon_i
 \]
- We want to find an isotonic function \(m \) s.t.:
 \[
 \hat{m} = \arg\min_{z} \sum (y_i - z(f_i))^2
 \]
- Bianca Zadrozny and Charles Elkan (2001) first to use isotonic regression for calibration in ML community
PAV Algorithm

1. **Algorithm 1.** PAV algorithm for estimating posterior probabilities from uncalibrated model predictions.
 - Input: training set \((f_i, y_i)\) sorted according to \(f_i\)
 - Initialize \(m_{i,1} = y_i, \ w_{i,1} = 1\)
 - While \(\exists i \text{ s.t. } \hat{m}_{k,i} \geq \hat{m}_{i,l}\)
 - Set \(w_{k,i} = w_{k,i-1} + w_{i,l}\)
 - Set \(\hat{m}_{k,i} = (w_{k,i-1} \hat{m}_{k,i-1} + w_{i,l} \hat{m}_{i,l})/w_{k,i}\)
 - Replace \(\hat{m}_{k,i-1}\) and \(\hat{m}_{i,l}\) with \(\hat{m}_{k,i}\)
 - Output the stepwise const. function generated by \(\hat{m}\)

Isotonic Regression

- Before:
- After:

Platt Scaling

- Before:
- After:

Platt Scaling vs. Isotonic Regression

- Platt Scaling:
- Isotonic Regression:
Summary

- Boosting full trees outperforms boosting weaker models
- Calibration via Platt Scaling or Isotonic Regression more effective than boosting log-loss when boosting trees
- Platt Scaling better with small data (< 1000 points)
- Isotonic Regression better with large data (> 1000 points)
- Not all learning methods benefit from calibration
- Before calibration, well-tuned neural nets predict the best probabilities
- After calibration, boosted probabilistic decision trees predict best probabilities

Where Does That Leave Us?

- Calibration via Platt Scaling or Isotonic Regression improves probs from max-margin methods such as Boosted Trees and SVMs
- Boosted Trees + Calibration best overall
- Are we done?
- No!
Best of the Best of the Best

<table>
<thead>
<tr>
<th>Model</th>
<th>Accuracy</th>
<th>F-Score</th>
<th>MAP</th>
<th>ROC Area</th>
<th>Average Precision</th>
<th>Break Even Point</th>
<th>Squared Error</th>
<th>Cross-Entropy</th>
<th>Calibration</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>0.928</td>
<td>0.918</td>
<td>0.975</td>
<td>0.907</td>
<td>0.908</td>
<td>0.919</td>
<td>0.944</td>
<td>0.989</td>
<td>0.9333</td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>0.860</td>
<td>0.884</td>
<td>0.956</td>
<td>0.977</td>
<td>0.958</td>
<td>0.952</td>
<td>0.932</td>
<td>0.880</td>
<td>0.914</td>
<td></td>
</tr>
<tr>
<td>SVM</td>
<td>0.817</td>
<td>0.917</td>
<td>0.947</td>
<td>0.963</td>
<td>0.928</td>
<td>0.929</td>
<td>0.884</td>
<td>0.886</td>
<td>0.826</td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>0.833</td>
<td>0.833</td>
<td>0.953</td>
<td>0.972</td>
<td>0.950</td>
<td>0.928</td>
<td>0.875</td>
<td>0.901</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>KNN</td>
<td>0.799</td>
<td>0.820</td>
<td>0.914</td>
<td>0.890</td>
<td>0.898</td>
<td>0.786</td>
<td>0.805</td>
<td>0.706</td>
<td>0.835</td>
<td></td>
</tr>
<tr>
<td>BST-RF</td>
<td>0.818</td>
<td>0.849</td>
<td>0.953</td>
<td>0.972</td>
<td>0.950</td>
<td>0.928</td>
<td>0.875</td>
<td>0.901</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>ANN-RF</td>
<td>0.823</td>
<td>0.831</td>
<td>0.953</td>
<td>0.972</td>
<td>0.950</td>
<td>0.928</td>
<td>0.875</td>
<td>0.901</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>SVM-RF</td>
<td>0.833</td>
<td>0.833</td>
<td>0.953</td>
<td>0.972</td>
<td>0.950</td>
<td>0.928</td>
<td>0.875</td>
<td>0.901</td>
<td>0.878</td>
<td></td>
</tr>
<tr>
<td>RF-KNN</td>
<td>0.611</td>
<td>0.771</td>
<td>0.856</td>
<td>0.871</td>
<td>0.888</td>
<td>0.856</td>
<td>0.825</td>
<td>0.608</td>
<td>0.734</td>
<td></td>
</tr>
<tr>
<td>NFC</td>
<td>0.802</td>
<td>0.823</td>
<td>0.839</td>
<td>0.849</td>
<td>0.752</td>
<td>0.714</td>
<td>0.604</td>
<td>0.630</td>
<td>0.678</td>
<td></td>
</tr>
<tr>
<td>NAIVE-B</td>
<td>0.536</td>
<td>0.625</td>
<td>0.766</td>
<td>0.633</td>
<td>0.733</td>
<td>0.730</td>
<td>0.539</td>
<td>0.565</td>
<td>0.161</td>
<td></td>
</tr>
</tbody>
</table>

Current Ensemble Methods

- Bagging
- Boosting
- Random Forests
- Error Correcting Output Codes (ECOC) …

- Average of multiple models
- Bayesian Model Averaging
- Stacking …

- Ensemble methods differ in:
 - how models are generated
 - how models are combined

If we need to train all models and pick best, can we do better than picking best?

"A necessary and sufficient condition for an ensemble of classifiers to be more accurate than any of its individual members is if the classifiers are accurate and diverse."

-- Tom Dietterich (2000)
Normalized Scores of Ensembles

<table>
<thead>
<tr>
<th>Model</th>
<th>Threshold Metrics</th>
<th>Rank-Ordering Metrics</th>
<th>Probability Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>Precision</td>
<td>Score</td>
</tr>
<tr>
<td>BAYESAVG</td>
<td>0.9566</td>
<td>0.9504</td>
<td>0.9557</td>
</tr>
<tr>
<td>BAYESAVG</td>
<td>0.9871</td>
<td>0.9851</td>
<td>0.9851</td>
</tr>
<tr>
<td>STACK_LR</td>
<td>0.8906</td>
<td>0.9258</td>
<td>0.9258</td>
</tr>
<tr>
<td>BEST</td>
<td>0.9067</td>
<td>0.9188</td>
<td>0.9188</td>
</tr>
</tbody>
</table>

New Ensemble Method: ES

- Train many different models:
 - different algorithms
 - different parameter settings
 - all trained on same train set
 - all trained to “natural” optimization criterion
- Add all models to library:
 - no model selection
 - no validation set
 - some models bad, some models good, a few models excellent
 - yields diverse set of models, some of which are good on almost any metric
- Forward stepwise model selection from library:
 - start with empty ensemble
 - try adding each model one-at-a-time to ensemble
 - commit model that maximizes performance on metric on a test set
 - repeat until performance stops getting better

Basic Ensemble Selection Algorithm

<table>
<thead>
<tr>
<th>Model Library</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
</tr>
<tr>
<td>Model 4</td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td></td>
</tr>
<tr>
<td>Model 8</td>
<td></td>
</tr>
<tr>
<td>Model 9</td>
<td></td>
</tr>
</tbody>
</table>

Basic Ensemble Selection Algorithm

<table>
<thead>
<tr>
<th>Model Library</th>
<th>AUC Score on the 1k validation set</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.8453</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.8726</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>0.9164</td>
<td></td>
</tr>
<tr>
<td>Model 4</td>
<td>0.8142</td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td>0.8453</td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td>0.8745</td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td>0.9024</td>
<td></td>
</tr>
<tr>
<td>Model 8</td>
<td>0.7034</td>
<td></td>
</tr>
<tr>
<td>Model 9</td>
<td>0.8342</td>
<td></td>
</tr>
</tbody>
</table>
Basic Ensemble Selection Algorithm

<table>
<thead>
<tr>
<th>Model Library</th>
<th>AUC Score on the 1k validation set</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.8453</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.8726</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>0.9164</td>
<td>0.9164</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.8142</td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td>0.8453</td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td>0.8745</td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td>0.9024</td>
<td></td>
</tr>
<tr>
<td>Model 8</td>
<td>0.7034</td>
<td></td>
</tr>
<tr>
<td>Model 9</td>
<td>0.8342</td>
<td></td>
</tr>
</tbody>
</table>

AUC Score on the 1k validation set

\[+ \text{ Ensemble } = \]

<table>
<thead>
<tr>
<th>Model Library</th>
<th>AUC Score on the 1k validation set</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.8327</td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>0.8702</td>
<td></td>
</tr>
<tr>
<td>Model 3</td>
<td>0.9164</td>
<td>0.9164</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.9284</td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td>0.9047</td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td>0.8832</td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td>0.9126</td>
<td></td>
</tr>
<tr>
<td>Model 8</td>
<td>0.8245</td>
<td></td>
</tr>
<tr>
<td>Model 9</td>
<td>0.9384</td>
<td></td>
</tr>
</tbody>
</table>

AUC Score on the 1k validation set

\[+ \text{ Ensemble } = \]
Basic Ensemble Selection Algorithm

<table>
<thead>
<tr>
<th>Model Library</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>Model 3</td>
</tr>
<tr>
<td>Model 2</td>
<td>Model 9</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.9164</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.9384</td>
</tr>
</tbody>
</table>

AUC Score on the 1k validation set + Ensemble =

<table>
<thead>
<tr>
<th>Model Library</th>
<th>AUC Score on the 1k validation set</th>
<th>Ensemble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.8502 0.8327</td>
<td>Model 3</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.9243 0.8702</td>
<td>Model 9</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.8992 0.9284</td>
<td></td>
</tr>
<tr>
<td>Model 5</td>
<td>0.8090 0.9047</td>
<td></td>
</tr>
<tr>
<td>Model 6</td>
<td>0.9424 0.8832</td>
<td></td>
</tr>
<tr>
<td>Model 7</td>
<td>0.9045 0.9126</td>
<td></td>
</tr>
<tr>
<td>Model 8</td>
<td>0.9243 0.8245</td>
<td></td>
</tr>
</tbody>
</table>

Basic Ensemble Selection Algorithm

<table>
<thead>
<tr>
<th>Model Library</th>
<th>AUC Score on the 1k validation set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.9164</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.9384</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.9164</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.9384</td>
</tr>
<tr>
<td>Model 5</td>
<td>0.9424</td>
</tr>
<tr>
<td>Model 6</td>
<td>0.9424</td>
</tr>
<tr>
<td>Model 7</td>
<td>0.9424</td>
</tr>
<tr>
<td>Model 8</td>
<td>0.9424</td>
</tr>
</tbody>
</table>

Basic Ensemble Selection Algorithm

<table>
<thead>
<tr>
<th>Model Library</th>
<th>AUC Score on the 1k validation set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.8502 0.8327</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.9243 0.8702</td>
</tr>
<tr>
<td>Model 3</td>
<td>0.9164 0.9384</td>
</tr>
<tr>
<td>Model 4</td>
<td>0.8992 0.9284</td>
</tr>
<tr>
<td>Model 5</td>
<td>0.8090 0.9047</td>
</tr>
<tr>
<td>Model 6</td>
<td>0.9424 0.8832</td>
</tr>
<tr>
<td>Model 7</td>
<td>0.9045 0.9126</td>
</tr>
<tr>
<td>Model 8</td>
<td>0.9243 0.8245</td>
</tr>
</tbody>
</table>
Big Problem: Overfitting

- More models => better chance of finding combination with good performance on any given problem and metric,
- but …
- also better chance of overfitting to the hillclimb set

- Tricks to Reduce Overfitting:
 - Eliminate Inferior Models: prevents mistakes
 - Ensemble Initialization: give “inertia” to initial ensemble
 - Stepwise Selection with Replacement: stopping point less critical
 - Calibrate Models in Ensemble: all models speak same language
 - Bagged Ensemble Selection: reduces variance

- Critical to take steps to reduce overfitting

1st Trick: Ensemble Initialization

Instead of starting with empty ensemble, initialize with best N models

2nd Trick: Selection with Replacement

- After initializing ensemble with best N models

- Forward Selection with Replacement:
 - add each model one-at-a-time to ensemble
 - models added by averaging predictions
 - calculate performance metric
 - commit model that improves performance most
 - repeat until ensemble too large (we typically use ~ 250 steps)
 - return ensemble with best performance on validation set

- models added 3 times have 3X weight of models added once
- simple form of model weighting is less prone to overfitting
3rd Trick: Bagged Selection

- Draw a sample of models from library (we use $p = 0.5$)
- Do ensemble selection from this sample of models
- Repeat N times (we use $N=20$)
- Final model is average of the N ensembles
 - each ensemble is simple weighted average of base-level models
 - average of N such ensembles also is a simple weighted average of the base-level models

Normalized Scores for ES

<table>
<thead>
<tr>
<th>Model</th>
<th>Threshold Metrics</th>
<th>Rank/Ordering Metrics</th>
<th>Probability Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Accuracy</td>
<td>F-Score</td>
<td>AUC Area</td>
</tr>
<tr>
<td>ES</td>
<td>0.9506</td>
<td>0.9442</td>
<td>0.9916</td>
</tr>
<tr>
<td>MAE</td>
<td>0.9283</td>
<td>0.9188</td>
<td>0.9733</td>
</tr>
<tr>
<td>MSE</td>
<td>0.9363</td>
<td>0.9116</td>
<td>0.9886</td>
</tr>
<tr>
<td>RNN</td>
<td>0.8763</td>
<td>0.8807</td>
<td>0.9721</td>
</tr>
<tr>
<td>STACK</td>
<td>0.8751</td>
<td>0.7772</td>
<td>0.7992</td>
</tr>
<tr>
<td>BAG-DT</td>
<td>0.8600</td>
<td>0.8540</td>
<td>0.9556</td>
</tr>
<tr>
<td>BAYESAVG</td>
<td>0.9283</td>
<td>0.9096</td>
<td>0.9708</td>
</tr>
<tr>
<td>BEST</td>
<td>0.8978</td>
<td>0.7028</td>
<td>0.8981</td>
</tr>
<tr>
<td>AVG-ALL</td>
<td>0.9067</td>
<td>0.8540</td>
<td>0.9556</td>
</tr>
</tbody>
</table>
Ensemble Selection vs Best: 3 NLP Problems

Ensemble Selection Works, But Is It Worth It?

Computational Cost
- Have to train multiple models anyway
 - models can be trained in parallel
 - different packages, different machines, at different times, by different people
 - just generate and collect (no optimization necessary, no test sets)
 - saves human effort - no need to examine/optimize models
 - model library can be built before optimization metric is known
 - anytime selection - no need to wait for all models
- Ensemble Selection is cheap:
 - each iteration, consider adding 2000+ models to ensemble
 - adding model is simple unweighted averaging of predictions
 - caching makes this very efficient
 - compute performance metric when each model is added
 - for 250 iterations, evaluate 250*2000 = 500,000 ensembles
 - ~ 1 minute on workstation if metric is not expensive

What Models are Used in Ensembles?

<table>
<thead>
<tr>
<th>What Models are Used in Ensembles?</th>
<th>Acc</th>
<th>Fsc</th>
<th>Lft</th>
<th>Rec</th>
<th>Apr</th>
<th>Bep</th>
<th>Rms</th>
<th>Mse</th>
<th>Sur</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADULT</td>
<td>0.71</td>
<td>0.132</td>
<td>0.101</td>
<td>0.360</td>
<td>0.430</td>
<td>0.243</td>
<td>0.167</td>
<td>0.944</td>
<td>0.573</td>
<td>0.272</td>
</tr>
<tr>
<td>ANN</td>
<td>0.020</td>
<td>0.015</td>
<td>0.586</td>
<td>0.271</td>
<td>0.029</td>
<td>0.049</td>
<td>0.000</td>
<td>0.000</td>
<td>0.009</td>
<td>0.009</td>
</tr>
<tr>
<td>SVM</td>
<td>0.001</td>
<td>0.000</td>
<td>0.110</td>
<td>0.246</td>
<td>0.274</td>
<td>0.092</td>
<td>0.057</td>
<td>0.000</td>
<td>0.022</td>
<td>0.105</td>
</tr>
<tr>
<td>DT</td>
<td>0.020</td>
<td>0.035</td>
<td>0.007</td>
<td>0.055</td>
<td>0.049</td>
<td>0.199</td>
<td>0.746</td>
<td>0.867</td>
<td>0.234</td>
<td>0.258</td>
</tr>
<tr>
<td>BAG_DT</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
<td>0.004</td>
<td>0.005</td>
<td>0.002</td>
<td>0.006</td>
<td>0.100</td>
<td>0.014</td>
<td>0.005</td>
</tr>
<tr>
<td>BST_DT</td>
<td>0.101</td>
<td>0.152</td>
<td>0.255</td>
<td>0.057</td>
<td>0.032</td>
<td>0.047</td>
<td>0.024</td>
<td>0.028</td>
<td>0.075</td>
<td>0.069</td>
</tr>
<tr>
<td>BST_STMP</td>
<td>0.776</td>
<td>0.666</td>
<td>0.171</td>
<td>0.166</td>
<td>0.181</td>
<td>0.548</td>
<td>0.000</td>
<td>0.000</td>
<td>0.032</td>
<td>0.317</td>
</tr>
<tr>
<td>CVD_TYPE</td>
<td>0.010</td>
<td>0.010</td>
<td>0.001</td>
<td>0.038</td>
<td>0.023</td>
<td>0.009</td>
<td>0.087</td>
<td>0.097</td>
<td>0.052</td>
<td>0.056</td>
</tr>
<tr>
<td>ANN</td>
<td>0.179</td>
<td>0.166</td>
<td>0.576</td>
<td>0.232</td>
<td>0.295</td>
<td>0.202</td>
<td>0.436</td>
<td>0.427</td>
<td>0.364</td>
<td>0.362</td>
</tr>
<tr>
<td>KNN</td>
<td>0.021</td>
<td>0.016</td>
<td>0.087</td>
<td>0.056</td>
<td>0.106</td>
<td>0.051</td>
<td>0.010</td>
<td>0.013</td>
<td>0.038</td>
<td>0.056</td>
</tr>
<tr>
<td>SVM</td>
<td>0.061</td>
<td>0.054</td>
<td>0.012</td>
<td>0.030</td>
<td>0.242</td>
<td>0.029</td>
<td>0.088</td>
<td>0.368</td>
<td>0.200</td>
<td>0.202</td>
</tr>
<tr>
<td>DT</td>
<td>0.005</td>
<td>0.006</td>
<td>0.002</td>
<td>0.010</td>
<td>0.015</td>
<td>0.006</td>
<td>0.016</td>
<td>0.022</td>
<td>0.044</td>
<td>0.036</td>
</tr>
<tr>
<td>BAG_DT</td>
<td>0.553</td>
<td>0.613</td>
<td>0.130</td>
<td>0.279</td>
<td>0.240</td>
<td>0.644</td>
<td>0.442</td>
<td>0.073</td>
<td>0.292</td>
<td>0.358</td>
</tr>
<tr>
<td>BST_DT</td>
<td>0.170</td>
<td>0.134</td>
<td>0.194</td>
<td>0.030</td>
<td>0.080</td>
<td>0.059</td>
<td>0.000</td>
<td>0.000</td>
<td>0.009</td>
<td>0.091</td>
</tr>
</tbody>
</table>

[Art Munson, Claire Cardie, Rich Caruana. EMNLP/HLDT 2005]
What Models are Used in Ensembles?

<table>
<thead>
<tr>
<th>COV-TYPE</th>
<th>Acc</th>
<th>Fsc</th>
<th>Lift</th>
<th>Roc</th>
<th>Apr</th>
<th>Bep</th>
<th>Rms</th>
<th>Mse</th>
<th>Sat</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANN</td>
<td>.071</td>
<td>.132</td>
<td>.101</td>
<td>.365</td>
<td>.430</td>
<td>.243</td>
<td>.167</td>
<td>.094</td>
<td>.573</td>
<td>.272</td>
</tr>
<tr>
<td>KNN</td>
<td>.020</td>
<td>.015</td>
<td>.586</td>
<td>.037</td>
<td>.029</td>
<td>.049</td>
<td>.000</td>
<td>.000</td>
<td>.049</td>
<td>.093</td>
</tr>
<tr>
<td>SVM</td>
<td>.001</td>
<td>.000</td>
<td>.110</td>
<td>.284</td>
<td>.274</td>
<td>.192</td>
<td>.057</td>
<td>.000</td>
<td>.022</td>
<td>.105</td>
</tr>
<tr>
<td>DT</td>
<td>.020</td>
<td>.035</td>
<td>.007</td>
<td>.088</td>
<td>.049</td>
<td>.019</td>
<td>.746</td>
<td>.867</td>
<td>.234</td>
<td>.258</td>
</tr>
<tr>
<td>BAG_DT</td>
<td>.002</td>
<td>.001</td>
<td>.000</td>
<td>.004</td>
<td>.005</td>
<td>.002</td>
<td>.006</td>
<td>.010</td>
<td>.014</td>
<td>.005</td>
</tr>
<tr>
<td>BST_DT</td>
<td>.110</td>
<td>.152</td>
<td>.025</td>
<td>.057</td>
<td>.032</td>
<td>.047</td>
<td>.024</td>
<td>.028</td>
<td>.075</td>
<td>.069</td>
</tr>
<tr>
<td>BST_STMP</td>
<td>.776</td>
<td>.666</td>
<td>.171</td>
<td>.166</td>
<td>.181</td>
<td>.548</td>
<td>.000</td>
<td>.000</td>
<td>.032</td>
<td>.112</td>
</tr>
<tr>
<td>COV-TYPE</td>
<td></td>
</tr>
<tr>
<td>ANN</td>
<td>.011</td>
<td>.010</td>
<td>.001</td>
<td>.038</td>
<td>.023</td>
<td>.009</td>
<td>.087</td>
<td>.097</td>
<td>.052</td>
<td>.041</td>
</tr>
<tr>
<td>SVM</td>
<td>.021</td>
<td>.016</td>
<td>.087</td>
<td>.104</td>
<td>.106</td>
<td>.051</td>
<td>.010</td>
<td>.013</td>
<td>.038</td>
<td>.056</td>
</tr>
<tr>
<td>DT</td>
<td>.061</td>
<td>.054</td>
<td>.012</td>
<td>.238</td>
<td>.242</td>
<td>.029</td>
<td>.408</td>
<td>.368</td>
<td>.200</td>
<td>.202</td>
</tr>
<tr>
<td>BAG_DT</td>
<td>.005</td>
<td>.006</td>
<td>.002</td>
<td>.010</td>
<td>.015</td>
<td>.006</td>
<td>.016</td>
<td>.022</td>
<td>.044</td>
<td>.016</td>
</tr>
<tr>
<td>BST_DT</td>
<td>.553</td>
<td>.613</td>
<td>.130</td>
<td>.278</td>
<td>.240</td>
<td>.644</td>
<td>.042</td>
<td>.073</td>
<td>.292</td>
<td>.358</td>
</tr>
<tr>
<td>BST_STMP</td>
<td>.700</td>
<td>.134</td>
<td>.194</td>
<td>.080</td>
<td>.080</td>
<td>.059</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.091</td>
</tr>
</tbody>
</table>

What Models are Used by ES?

- Most ensembles use 10-100 of the 2000 models
- Different models are selected for different problems
- Different models are selected for different metrics
- Most ensembles use a diversity of model types
- Most ensembles use different parameter settings
- Selected Models often make sense:
 - Neural nets for RMS, Cross-Entropy
 - Max-margin methods for Accuracy
 - Large k in k nn for AUC

ES Pros & Cons

Disadvantages:
- Have to train many models
 - If you want the best, you were going to do it anyway
 - Packages such as WEKA and MLC++ make it easier
- Loss of intelligibility
- No cool theory!

Advantages:
- Can optimize to almost any performance metric
- Better performance than anything else we compared to

Ensemble Selection

Good news:
- A carefully selected ensemble that combines many models outperforms boosting, bagging, random forests, SVMs, and neural nets, … (just because it builds on top of them)

Bad news:
- The ensembles are too big, too slow, too cumbersome to use for most applications
Best Ensembles are Big and Ugly!

- Best ensemble for one problem/metric has 422 models:
 - 72 boosted trees (28,642 individual decision trees!)
 - 1 random forest (1024 decision trees)
 - 5 bagged trees (100 decision trees in each model)
 - 44 neural nets (2,200 hidden units, total, >100,000 weights)
 - 115 knn models (both large and expensive!)
 - 38 SVMs (100’s of support vectors in each model)
 - 26 boosted stump models (36,184 stumps total -- could compress)
 - 122 individual decision trees
 - ...
- Best ensemble:
 - takes more than 1GB to store
 - takes ~5 seconds to execute per test case!

Solution: Model Compression

- Pass large amounts of unlabeled data (synthetic data points or real unlabeled data) through ensemble and collect predictions
 - 100,000 to 10,000,000 synthetic training points
 - Extensional representation of the ensemble model
- Train copycat model on this large synthetic train set to mimic the high-performance ensemble
 - Train neural net to mimic ensemble
 - Potential to not only perform as well as target ensemble, but possibly outperform it

Work In Progress (Cristi Bucila)

Results

- Neural nets trained to mimic high performing bagged tree models
 - perform better than the target models on eight test problems and three test metrics
 - perform much better than any ANN we could train on the original data
- Massive experiment using ensemble selection predictions and nine performance metrics currently underway
 - getting ensemble predictions is much more expensive
 - willing to trade off cost at train-time for speed and compactness at run-time
Why Mimic with Neural Nets?

- Decision trees do not work well
 - Synthetic data must be very large because of recursive partitioning
 - Mimic decision trees are enormous (depth > 1000 and > 10^6 nodes)
 making them expensive to store and compute
 - Single tree does not seem to model ensemble accurately enough

- SVMs
 - Number of support vectors increases quickly with complexity

- Artificial Neural nets
 - Can model complex functions with modest # of hidden units
 - Can compress millions of training cases into thousands of weights
 - Expense to train, but execution cost is low (just matrix multiplies)
 - Models with few thousand weights have small footprint

How Important is it to Optimize to the Correct Performance Metric?

RMS Loss for Simple 2-Param Model

Loss on Six Metrics for 2-Param Model
Scaling, Ranking, and Normalizing

- Problem:
 - some metrics, 1.00 is best (e.g., ACC)
 - some metrics, 0.00 is best (e.g., RMS)
 - some metrics, baseline is 0.50 (e.g., AUC)
 - some problems/metrics, 0.60 is excellent performance
 - some problems/metrics, 0.99 is poor performance

- Solution 1: Normalized Scores:
 - baseline performance => 0.00
 - best observed performance => 1.00 (proxy for Bayes optimal)
 - puts all metrics on equal footing

- Solution 2: Scale by Standard Deviation
- Solution 3: Rank Correlation

- The 10 metrics span a 2-5 dimension subspace
2-D Multi-Dimensional Scaling

Normalized Scores Scaling
Rank-Correlation Distance

Correlation Analysis

- 2000 performances for each metric on each problem
- Correlation between all pairs of metrics
 - 10 metrics
 - 45 pairwise correlations
- Average of correlations over 7 test problems
- Standard correlation
- Rank correlation
- Present rank correlation here
Rank Correlations

<table>
<thead>
<tr>
<th>Metric</th>
<th>ACC</th>
<th>FSC</th>
<th>LFT</th>
<th>AUC</th>
<th>APR</th>
<th>BEP</th>
<th>RMS</th>
<th>MXE</th>
<th>CAL</th>
<th>SAR</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>1.00</td>
<td>0.87</td>
<td>0.85</td>
<td>0.88</td>
<td>0.89</td>
<td>0.93</td>
<td>0.87</td>
<td>0.75</td>
<td>0.56</td>
<td>0.92</td>
<td>0.852</td>
</tr>
<tr>
<td>FSC</td>
<td>0.87</td>
<td>1.00</td>
<td>0.77</td>
<td>0.81</td>
<td>0.82</td>
<td>0.87</td>
<td>0.79</td>
<td>0.69</td>
<td>0.50</td>
<td>0.84</td>
<td>0.796</td>
</tr>
<tr>
<td>LFT</td>
<td>0.85</td>
<td>0.77</td>
<td>1.00</td>
<td>0.96</td>
<td>0.91</td>
<td>0.89</td>
<td>0.82</td>
<td>0.73</td>
<td>0.47</td>
<td>0.92</td>
<td>0.832</td>
</tr>
<tr>
<td>AUC</td>
<td>0.88</td>
<td>0.81</td>
<td>0.96</td>
<td>1.00</td>
<td>0.95</td>
<td>0.92</td>
<td>0.85</td>
<td>0.77</td>
<td>0.51</td>
<td>0.96</td>
<td>0.861</td>
</tr>
<tr>
<td>APR</td>
<td>0.89</td>
<td>0.82</td>
<td>0.91</td>
<td>0.95</td>
<td>1.00</td>
<td>0.92</td>
<td>0.86</td>
<td>0.75</td>
<td>0.50</td>
<td>0.93</td>
<td>0.853</td>
</tr>
<tr>
<td>BEP</td>
<td>0.93</td>
<td>0.87</td>
<td>0.89</td>
<td>0.92</td>
<td>0.92</td>
<td>1.00</td>
<td>0.87</td>
<td>0.75</td>
<td>0.52</td>
<td>0.93</td>
<td>0.860</td>
</tr>
<tr>
<td>RMS</td>
<td>0.87</td>
<td>0.79</td>
<td>0.82</td>
<td>0.85</td>
<td>0.86</td>
<td>0.87</td>
<td>1.00</td>
<td>0.92</td>
<td>0.79</td>
<td>0.95</td>
<td>0.872</td>
</tr>
<tr>
<td>MXE</td>
<td>0.75</td>
<td>0.69</td>
<td>0.73</td>
<td>0.77</td>
<td>0.75</td>
<td>0.75</td>
<td>0.92</td>
<td>1.00</td>
<td>0.81</td>
<td>0.86</td>
<td>0.803</td>
</tr>
<tr>
<td>CAL</td>
<td>0.56</td>
<td>0.50</td>
<td>0.47</td>
<td>0.51</td>
<td>0.50</td>
<td>0.52</td>
<td>0.79</td>
<td>0.81</td>
<td>1.00</td>
<td>0.65</td>
<td>0.631</td>
</tr>
<tr>
<td>SAR</td>
<td>0.92</td>
<td>0.84</td>
<td>0.92</td>
<td>0.96</td>
<td>0.93</td>
<td>0.93</td>
<td>0.95</td>
<td>0.86</td>
<td>0.65</td>
<td>1.00</td>
<td>0.896</td>
</tr>
</tbody>
</table>

- Correlation analysis consistent with MDS analysis
- Ordering metrics have high correlations to each other
- ACC, AUC, RMS have best correlations of metrics in each metric class
- RMS has good correlation to other metrics
- SAR has best correlation to other metrics

Summary

- Predicting Probabilities:
 - Neural Nets, Bagged Trees, Random Forests best models overall right out of box
 - Calibration with Platt Scaling or Isotonic Regression yields better probabilities for
 Boosting, SVMs, Random Forests, Decision Trees, and Naïve Bayes
 - Where sigmoid is appropriate, Platt Scaling is more effective with little data
 - Isotonic Regression more powerful, use when data is plentiful
- Empirical Comparison:
 - Calibrated Boosted Trees best performance overall (win 7/9 metrics!)
 - Even after calibration, no one learning method does it all
 - Best method depends on problem, metric, and train set size
 - Picking best model yields much better performance than any one method
- Ensemble Selection:
 - Carefully selected ensemble of models yields further improvements
 - Can optimize ensemble to any performance metric
- Performance Metrics:
 - 9 metrics span 2-4 Dim subspace
 - Ordering Metrics Tightly Cluster: AUC ~ APR ~ BEP
 - RMS ~ MXE, but RMS more centrally located. RMS is king!

Thank You!