Semi-Supervised Learning, Clustering with User Feedback, and Meta Clustering

What is Clustering?
- Finding groups of similar objects in data
  + Clustering people with similar characteristics
    + Activities
    + Network of associations
    + Educational, socio-economic, background
    + Beliefs and behaviors
  + Clustering text/documents with similar characteristics
    + By content
    + By document type
    + By document intent
    + By intended audience
  + Clustering network events
    + By intent: attack vs. intrusion vs. denial of service vs. normal
    + By type: port scan vs. probe vs. …

Why Clustering?
- Data exploration
  - Our capacity to collect data has outstripped our capacity to understand/interpret the data
  - Chicken and the egg problem with new data:
    + Don't know what you're looking for until you understand data
    + Can't understand data until you know what to look for
  - Easier to find patterns in groups of objects than in single objects
  - As data grows bigger, but human brain remains fixed, must present experts with less raw, more processed data
- Focused search and data analysis
  - soft/fuzzy/approximate/smart queries
- Efficient transmission, presentation, summarization
Two Kinds of Clustering

**Text Book**
- “True” model known
- Parameter estimation
- Data modelling
- Optimal clustering exists: use EM... to find it
- Much work on “optimal” algorithms

**Real World**
- “True” model not known
- Curve fitting
- Data exploration
- Quality judged by user: iterative refinement
- Little work on user control

Standard Clustering is Inadequate

**Text Clustering**
- subject
- doc type
- level
- language

**Proteins Clustering**
- sequence
- function
- structure
- organism

**Disadvantages:**
- user in the loop
- manually engineer distance metric
- time consuming
- requires significant expertise
- final clustering often sub-optimal

No Such Thing as “the Right” Clustering.

Instead, want to find “Useful” Clusterings.

Users Need More Control Over clustering.

New Approach: **Meta Clustering**

- Automatically generate many different clusterings
- Cluster clusterings to organize results
- Present user with organized meta clustering

- Human out of loop: just select best clustering
- No need to manually engineer distance metric
- Faster, better final clustering for task at hand
Main Goals

- Move away from clustering at the "assembly language level"
- Push as much work as possible required for clustering from the user to the computer
- Make clustering as automatic as possible
- More effective clustering in hands of users, not researchers
- Find better clusters/clusterings
- Find better clusters/clusterings faster
- Simultaneously provide multiple/alternate views of data
- Meta level helps users understand complex data faster
- Provide more natural user controls and feedback

Multiple Different Clusterings

MetaCluster: Cluster of Clusterings

Research Questions

- How to generate different clusterings?
  - Automatically adjust distance metric
  - EM/k-means gets stuck in local minima
  - Stochastic clustering (bagging HAC)
- How to measure distance between clusterings?
  - Hop distance (hierarchical clustering methods)
  - Pairwise overlap
- How to organize clusterings for user?
  - Hierarchical MDS?
- How to combine/merge clusterings?
Q1: Generating Alternate Clusterings

- EM/k-means clustering
  - Iterated random restarts
- HAC: hierarchical agglomerative clustering
  - Stochastic bagged agglomerative clustering
- MDS: multidimensional scaling
  - Eigenvector analysis
  - Feature creation, selection, and weighting
- Automatic distance metric learning
  - Find distance metric that responds to user feedback

Meta Clustering Text Documents

- focused web crawls in 26 categories
- 30,000 web documents
- bags-of-words distance between documents
- cluster documents
  - k-means
  - hierarchical clustering
- calculate hop-distance between clusterings
- cluster clusterings

Q2: Comparing Entire Clusterings

\[
\text{dist}_{c_1}(i,j) = 7 \\
\text{dist}_{c_2}(i,j) = 30 \\
\Sigma \ldots (7-30)^2
\]
Hop Distance

Compute distance between clusterings pairwise:

\[ \sum_{i,j} (\text{HOP}_{c_1}(i,j) - \text{HOP}_{c_2}(i,j))^\alpha \]

Q3: Understanding Clusters

- Visualization
- Textual summarization
- Multiple parallel views
- Easy group summarization
- Easy point navigation
- Translate to DB query or distance metric

Q4: Cluster Visualization/Interpretation
Research Questions

- How to generate qualitatively different clusterings?
- How to measure similarity between entire clusterings?
- How best to cluster the clusterings at the meta level?
- How to aid cluster/clustering visualization, interpretation, and summarization?
- How to provide and respond to user feedback?
- How to convert best clustering to a distance metric that can be used for other purposes beyond the clustering?
- How to combine meta clustering with other data analysis?
- How to evaluate clustering performance?

Research

- Collaboration with real users
  - Not "textbook" clustering
  - Real data
  - Real needs
- Computational power to generate clusterings
- Real Experts
  - Interpret clusterings
  - Feedback on overall system
  - Measure usefulness
- Benchmark problems

Ultimately, users want a clustering system that can be driven like a car, with a set of user controls, a dashboard full of indicators, and a windshield on the current clustering

Text Clustering With User Feedback
Yahoo! Problem

- 100,000 documents (papers, web pages, articles)
- Group them into classes or a hierarchy
- Not told what classes or hierarchy to use
- Group so docs can be browsed/retrieved easily
- Have criteria in mind, but can’t verbalize them
- Yahoo! Problem is ubiquitous

- There is no such thing as the right clustering, but...
- Like art, you know good/bad clusters when you see them

Types of Critiques/Constraints

- This pt doesn’t belong here
- Move this pt to that cluster
- These two pts shouldn’t be in the same cluster
- These two pts should be in the same cluster
- This cluster sucks
- This cluster is good
- This cluster is too small/large
- The label for this pt is “X”
- Move this cluster near that one
- Move this cluster up/down towards/away from the root
- The clustering is too coarse
- Give me a different clustering
- Give me a clustering halfway between these two clusterings
- Cluster using these features
- Cluster using this method
- ...

It’s Easier to Criticize Than to Create

- Do initial unsupervised clustering
- “Browse” clusters
- Criticize clustering
- Re-cluster with algorithm sensitive to your critique
- Repeat until happy with final clustering

Constraints ≠ Labels

- Constraints weaker than labels
  - Don’t have to know labels of pts to know that pts should or should not be grouped together
  - Don’t even have to know what the legal labels are
  - More pairwise constraints between pts than labelings
  - Users can generate constraints more easily than labels
Text Experiment 1

- 20,000 USENET articles
- Four subjects (we know labels, clusterer does not):

<table>
<thead>
<tr>
<th>Aviation Simulators</th>
<th>Real Aviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile Simulators</td>
<td>Real Automobiles</td>
</tr>
</tbody>
</table>

- Different users give different pairwise constraints:

Results

- 50% accuracy for unsupervised clustering
- Add 10 pairwise constraints (20,000 articles)
- 80% accuracy if constraints used to warp distance metric for unsupervised clustering

Text Experiment 2

Compare
Supervised Learning with Labels to
Semi-Supervised Clustering with User Constraints

Naive Bayes Bags-of-Words Model

Generative Model:

\[
p(d) = \prod_{w_j \in V} p(w_j \mid \theta)^{N(w_j,d)}
\]

Natural Distance Metric:

\[
KLD_M(d_1 \parallel d_2) = \left|d_1\right|KLD(d_1 \parallel M_{12}) + \left|d_2\right|KLD(d_2 \parallel M_{12})
\]
To Implement Constraints

Modify KL-Divergence:

\[
\text{KLD}' = \prod_{w_j \in V} \lambda_j \cdot p(w_j | \theta_{d_1}) \log \left( \frac{p(w_j | \theta_{d_2})}{p(w_j | \theta_{d_1})} \right)
\]

where the lambda weights control the warping of the distance metric for each word.

Adjusting the Weights

Given constraint that documents \(d_1\) and \(d_2\) should be in different clusters:

\[
\frac{\partial \text{KLD}'_{M(d_1 \parallel d_2)}}{\partial \lambda_j} = \left[ d_1 \right] p(w_j | \theta_{d_1}) \log \left( \frac{p(w_j | \theta_{d_1d_2})}{p(w_j | \theta_{d_1})} \right) + \left[ d_2 \right] p(w_j | \theta_{d_2}) \log \left( \frac{p(w_j | \theta_{d_1d_2})}{p(w_j | \theta_{d_2})} \right)
\]

Experiment

- 5 Reuters topic areas: business, health, politics, sports, tech
- 25 documents each
- EM-based clustering:
  - from \(p(d|c)\) compute \(p(c|d)\)
  - Soft clustering based on \(p(c|d)\)
  - Update cluster parameters
- Add constraints one-at-a-time that documents with different labels should not be in same cluster

Results
Constraints?

- For each constraint, we think we can devise a plausible clustering algorithm
- Don’t have one algorithm that can handle all – or even many – kinds of constraints at same time
- Soft or hard constraints?
  - may be impossible to satisfy all hard constraints
- Re-cluster from scratch, or from prior clustering?
- How to balance multiple, possibly conflicting, possibly incomparable, constraints?

Summary

- Real users want control
- Two extremes:
  - Navigating between many different offline clusterings
  - Interactive clustering with user feedback/constraints
    - Algorithms that allow many kinds of user feedback?
- Interfaces!
  - Not always easy to “browse” real clusterings
  - Displaying one clustering in another clustering helps
  - Need tools for cluster summarization