Statistical Learning Theory and PAC-Learning

CS678 Advanced Topics in Machine Learning
Thorsten Joachims
Spring 2003

Outline:
• What is the true (prediction) error of classification rule \(h \)?
• How to bound the true error given the training error?
• Finite hypothesis space and zero training error
• Finite hypothesis space and non-zero training error
• Infinite hypothesis spaces: VC-Dimension and Growth Function

Learning Classifiers from Examples (Scenario)

Scenario:
• Generator: Generates descriptions \(\tilde{x} \) according to distribution \(P(\tilde{x}) \).
• Teacher: Assigns a value \(y \) to each description \(\tilde{x} \) based on distribution \(P(y|\tilde{x}) \).

Given:
• Training examples \((\tilde{x}_1, y_1), ..., (\tilde{x}_n, y_n) \sim P(\tilde{x}, y) \quad \tilde{x}_i \in \mathbb{R}^N, y_i \in \{1,-1\} \)
• Set \(H \) of classification rules \(h \) (hypotheses) that map descriptions \(\tilde{x} \) to values \(y \) \((h(\tilde{x}) \rightarrow y) \).

Goal of Learner:
• Classification rule \(h \) from \(H \) that classifies new examples (again from \(P(\tilde{x}, y) \)) with low error rate!

\[
P(h(\tilde{x}) \neq y) = \int P(h(\tilde{x}) \neq y) dP(\tilde{x}, y) = \text{Err}_P(h)
\]

Principle: Empirical Risk Minimization (ERM)

Learning Principle:
Find the decision rule \(h^* \in H \) for which the training error is minimal:

\[
h^* = \arg\min_{h \in H} \{ \text{Err}_S(h) \}
\]

Training Error:

\[
\text{Err}_S(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(y_i \neq h(\tilde{x}_i))
\]

\[\Rightarrow\] Number of misclassifications on training examples.

Central Problem of Statistical Learning Theory:
When does a low training error lead to a low generalization error?
Sources of Variation

Learning Task:
- Generator: Generates descriptions \(\hat{x} \) according to distribution \(P(\hat{x}) \).
- Teacher: Assigns a value \(y \) to each description \(\hat{x} \) based on \(P(y|\hat{x}) \).

=> Learning Task: \(P(\hat{x}, y) = P(y|\hat{x})P(\hat{x}) \)

Process:
- Select task \(P(\hat{x}, y) \)
- Training sample \(S \) (depends on \(P(\hat{x}, y) \))
- Train learning algorithm \(A \) (e.g., randomized search)
- Test sample \(V \) (depends on \(P(\hat{x}, y) \))
- Apply classification rule \(h \) (e.g., randomized prediction)

What is the true error of classification rule \(h \)?

Includes variation from different test sets.

Problem Setting:
- given rule \(h \)
- given (independent) test sample \(S = (\hat{x}_1, y_1), ..., (\hat{x}_k, y_k) \) of size \(k \)

\(\hat{P}(h(\hat{x}) \neq y) dP(x,y) = Err_P(h) \)

Approach: measure error of \(h \) on test set

\[Err_V(h) = \frac{1}{k} \sum_{i=1}^{k} \Delta(y_i \neq h(\hat{x}_i)) \]

Binomial Distribution

The probability of observing \(x \) heads in a sample of \(n \) independent coin tosses, when the probability of heads is \(p \) in each toss, is

\[P(X = x|p, n) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r} \]

Confidence interval:

Given \(x \) observed heads, with at least 95% confidence the true value of \(p \) fulfills

\[P(X \geq x|p, n) \geq 0.025 \quad \text{and} \quad P(X \leq x|p, n) \geq 0.025 \]

Cross-Validation Estimation

Given:
- training set \(S \) of size \(n \)

Method:
- partition \(S \) into \(m \) subsets of equal size
- for \(i \) from 1 to \(m \)
 - train learner on all subsets except the \(i^{th} \)
 - test learner on \(i^{th} \) subset
 - record error rates on test set

=> Result: average over recorded error rates

Bias of estimate: see leave-one-out

Warning: Test sets are independent, but not the training sets!

=> no strictly valid hypothesis test is known for general learning algorithms (see [Dietterich/97])
Psychic Game

- I guess a 4 bit code
- You all guess a 4 bit code

=> The student who guesses my code clearly has telepathic abilities - right!?

How can You Convince Me of Your Psychic Abilities?

Setting:
- \(n \) bits
- \(|H|\) players

Question: For which \(n \) and \(|H|\) is prediction of zero-error player significantly different from random \((\rho = 0.5)\) with probability \(1 - \delta\)?

=> Hypothesis test for

\[
P(h_1\text{correct} \lor \ldots \lor h_{|H|}\text{correct}, \text{allnonpsychic}) < \delta
\]

or

\[
P(\exists h \in H; \text{Err}_p(h) = 0, \forall h \in H; \text{Err}_p(h) = 0.5) < \delta
\]

PAC Learning

Definition:
- \(C \) = class of concepts \(c: X \rightarrow \{-1, 1\} \) (functions to be learned)
- \(H \) = class of hypotheses \(h: X \rightarrow \{-1, 1\} \) (functions used by learner \(A \))
- \(S \) = training set (of size \(n \))
- \(\epsilon \) = desired error rate of learned hypothesis
- \(\delta \) = probability, with which the learner \(A \) is allowed to fail

\(C \) is PAC-learnable by Algorithm \(A \) using \(H \) and \(n \) examples, if

\[
P(\text{Err}(h_{A(S)}) \leq \epsilon) \geq (1 - \delta)
\]

for all \(c \in C, \epsilon, \delta, \) and \(P(X) \) so that \(A \) runs in polynomial time dependent on \(\epsilon, \delta \), the size of the training examples and the size of the concepts.

=> only polynomially many training examples allowed.

Case: Finite \(H \), Zero Error

- The hypothesis space \(H \) is finite
- There is always some \(h \) with zero training error (\(A \) returns one such \(h \))
- Probability that a (single) \(h \) with \(\text{Err}_p(h) \geq \epsilon \) has training error of zero

\[
(1 - \epsilon)^n
\]

- Probability that there exists \(h \) in \(H \) with \(\text{Err}_p(h) \geq \epsilon \) that has training error of zero

\[
P(\exists h \in H; \text{Err}_p(h) = 0, \text{Err}_p(h) > \epsilon) \leq |H|(1 - \epsilon)^n \leq |H|e^{-\epsilon n}
\]
Case: Finite H, Non-Zero Error

Goal:

$$P(\|\text{Err}_S(h_{A(S)}) - \text{Err}_D(h_{A(S)})\| \leq \epsilon) \geq (1 - \delta)$$

<=

$$P(\sup_H \|\text{Err}_S(h) - \text{Err}_D(h)\| \leq \epsilon) \geq (1 - \delta)$$

• Probability that for a fixed h, training error and test error differ by more than ϵ (Hoeffding / Chernoff Bound)

$$P_{\frac{2^\frac{\delta}{\epsilon^2}}{\epsilon^2}} (\sum_{i=1}^n x_i - p) > \frac{\delta}{\epsilon^2} \leq 2e^{-2n\epsilon^2}$$

• Probability over all h in H: union bound => multiply by $|H|$

Case: Infinite H

• union bound does no longer work.
• maybe not all hypotheses are really different?!

How Many Dichotomies for Fixed Sample?

• Sample S of size n
• Hypothesis class H

$$\Pi_{\phi}(S) = \{(h(x_1), h(x_2), ..., h(x_n)) : h \in H\}$$

Definition: H shatters S, if $|\Pi_{\phi}(S)| = 2^n$ (i.e. hypotheses from H can split S in all possible ways).

Vapnik/Chervonenkis Dimension

Definition: The VC-dimension of H is equal to the maximal number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>$+$</td>
<td>$+$</td>
<td>...</td>
<td>$+$</td>
</tr>
<tr>
<td>h_2</td>
<td>$-$</td>
<td>$+$</td>
<td>...</td>
<td>$+$</td>
</tr>
<tr>
<td>h_3</td>
<td>$+$</td>
<td>$-$</td>
<td>...</td>
<td>$+$</td>
</tr>
<tr>
<td>h_4</td>
<td>$-$</td>
<td>$-$</td>
<td>...</td>
<td>$+$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>h_n</td>
<td>$+$</td>
<td>$-$</td>
<td>...</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Growth function $\Phi_{\phi}(S)$: For all S

$$|\Pi_{\phi}(S)| \leq \Phi_{\text{VCdim}(H)}(n) \leq \frac{2^\text{VCdim}(H)}{\text{en}^\text{VCdim}(H)}$$
Linear Classifiers

Rules of the Form: weight vector \vec{w}, threshold b

$$h(x) = \text{sign}\left[\sum_{i=1}^{N} \vec{w}_i \vec{x}_i + b\right] = \begin{cases} 1 & \text{if } \sum_{i=1}^{N} \vec{w}_i \vec{x}_i + b > 0 \\ 0 & \text{else} \end{cases}$$

Geometric Interpretation (Hyperplane):

<table>
<thead>
<tr>
<th></th>
<th>+ + + + +</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- - - - -</td>
<td>b</td>
</tr>
</tbody>
</table>

VC-Dimension of Hyperplanes in \Re^2

- Three points in \Re^2 can be shattered with hyperplanes.

- Four points cannot be shattered.

\Rightarrow Hyperplanes in $\Re^2 \Rightarrow VCdim=3$

General: Hyperplanes in $\Re^N \Rightarrow VCdim=N+1$

Error Bound

Question: After n training examples, how close is the training error to the true error?

With probability η it holds for all $h \in H$:

$$Err_P(h) - Err_S(h) \leq \Phi(d, n, \eta)$$

$$\Phi(d, n) = \frac{d\sqrt{2n^2} + \frac{5}{3} \ln \frac{n}{4}}{n}$$

- n number of training examples
- d VC-dimension of hypothesis space H

$$Err_P(h) \leq Err_S(h) + \Phi(d, n, \eta)$$

SVM Motivation: Structural Risk Minimization

$$Err_P(h_1) \leq Err_S(h_1) + \Phi(VCdim(H), n, \eta)$$

Idea: Structure on hypothesis space.

Goal: Minimize upper bound on true error rate.