Hard MDPs and how to solve them

Sanjiban Choudhury
Long Horizons
Takeoff
(Respect power constraints)

Enroute
(Avoid sensed obstacles)

Touchdown
(Plan to multiple sites)
Receding Horizon Control (also called MPC!)

Step 1: Solve optimization problem to a horizon
Step 2: Execute the first control
Step 3: Repeat!
Constraints
Model-Predictive Control

- Continuously optimizes trajectory subject to nonlinear momentum dynamics
- Solve for future kinematic configurations
- Leverages optimized code and problem structure for speed
Activity!
We want to move our n-link manipulator from A to B but satisfy two constraints

#1: Don’t exceed torque limit

#2: Don’t hit wall

How do we hack iLQR to solve #1? #2?
Re-parameterization: The quick ’n’ easy way to solve constraints!
Example: Swing up using iLQR
How do we enforce a torque limit?

\[\tau_{\text{min}} \leq \tau \leq \tau_{\text{max}} \]
Idea: Reformulate the variables so the constraint must be satisfied

\[\tau_{\min} \leq \tau \leq \tau_{\max} \]

\[\tau = \text{Sigmoid}(z, \tau_{\min}, \tau_{\max}) \]
... when does re-parameterization fail?
Failure: Stuck on the far side of the sigmoid

Let’s say z is very high

What is $\frac{\partial x}{\partial z}$?
Failure 2: Constraints too complex to re-parameterize

Don’t hit wall
How do we handle more complex constraints?

\[\min_{x} f(x) \]

\[g(x) = 0 \]

\[h(x) \leq 0 \]
Hang on
Why not put a really really really high cost for violating constraints?
Penalty method

\[
\min_x f(x) + \frac{\alpha}{2} g(x)^2
\]

\[
\min_x f(x) \\ g(x) = 0
\]

Seems easy to implement ... what could possibly go wrong?
What would be the gradient at the optimal value?

\[
\min_x f(x) \quad \text{subject to} \quad g(x) = 0
\]

\[
\min_x f(x) + \frac{\alpha}{2} g(x)^2
\]
Lagrange’s key insight

V1: A statement on the gradient

\[\nabla_x f(x) \bigg|_{x=x^*} = \lambda \nabla_x g(x) \bigg|_{x=x^*} \]
Lagrange’s key insight

V2: A game!

$$\max \min f(x) - \lambda^T g(x)$$
We have seen such games before!

\[
\min_x \max_\lambda f(x) - \lambda^T g(x)
\]

"We control the lambdas"
Stably change λ

Follow the Regularized Leader!

Specific FTRL: Gradient Descent
Augmented Lagrangian

For $t = 1 \ldots T$

- **Update** λ_t
 \[\lambda_{t+1} = \lambda_t - \eta g(x_t) \]

- **Update** x_t
 \[x_{t+1} = \arg \min_x f(x) - \lambda_{t+1}^T g(x) \]
 \[= \arg \min_x f(x) - \lambda_t^T g(x) + \eta g(x)^2 \]
... and more
... and more

Non-convex / Non-differentiable

Partial Observability

What if the MDP is not known?
Dual Game: We control lambdas!

\[
\min_x \max_\lambda f(x) - \lambda^T g(x)
\]

Augmented Lagrangian

For \(t = 1 \ldots T \)

- Update \(\lambda_t \)
 \[
 \lambda_{t+1} = \lambda_t - \eta g(x_t)
 \]

- Update \(x_t \)
 \[
 x_{t+1} = \arg\min_x f(x) - \lambda^T_{t+1} g(x)
 = \arg\min_x f(x) - \lambda^T_t g(x) + \eta g(x)^2
 \]