
Learning for Robot Decision Making:
The Big Picture

Sanjiban Choudhury

1

2

3

How should robots learn to make good decisions?

WHY ask this question?

4

Take any
robot application

Formulate as a Markov
Decision Problem (MDP)

Solve MDPs using an
all-purpose toolkit

(Imitation/Reinforcement learning, Model based/free)

Deploy learners in real-world
(Safety, distribution shift, value alignment)

HOW can we answer this question?

5

Forward Backward

Application
What is the robot?
What is the task?

What are the metrics?
What is good enough?

Formulate
What is the MDP?

Discrete/Stochastic/Time?
What is known/unknown?

Solve
How do you want to
represent your policy?

Model-based? Model-free?
Learning: Data? Loss?

Activity!

Let’s solve the Unprotected Left Turn

7

8

Let’s solve the Unprotected Left Turn

Backward

Application
What is the robot?
What is the task?

What are the metrics?
What is good enough?

Formulate
What is the MDP?

Discrete/Stochastic/Time?
What is known/unknown?

Solve
How do you want to
represent your policy?

Model-based? Model-free?
Learning: Data? Loss?

9

We have worked through many
applications in this class …

https://www.youtube.com/watch?v=vk_-JqoGGQA

Model-Based OR Model Free?

10

Model Free Model Based

Directly learn
 or π Q(s, a)

Learn a model
, plan with

model to find
P(s′ |s, a)

π

Model-Based OR Model Free?

11

Model Free Model Based

Directly learn
 or π Q(s, a)

Learn a model
, plan with

model to find
P(s′ |s, a)

π
There exists a good

enough reactive policy

State space is too big to
search exhaustively

You need to reason about
many likely options

Small state space /
compressible state space

Model-Based OR AND Model Free

12

Model FreeModel Based

s′ = M̂(s, a)
Q*M(sT, aT)

Use model to
plan

Use model-free
terminal value function

HOW can we answer this question?

13

Forward Backward

Application
What is the robot?
What is the task?

What are the metrics?
What is good enough?

Formulate
What is the MDP?

Discrete/Stochastic/Time?
What is known/unknown?

Solve
How do you want to
represent your policy?

Model-based? Model-free?
Learning: Data? Loss?

HOW can we answer this question?

14

Goal
Minimize value

difference between
robot and the human

PDL
Apply Bellman,

express perf. difference
as sum of Q value

differences on states
the robot visits

Forward

A Game
Q values are not known,

must be estimated from feedback
from human or the world.
Create a game between

robot policy and Q value estimate,
solve via no-regret online learning

Backward

Application
What is the robot?
What is the task?

What are the metrics?
What is good enough?

Formulate
What is the MDP?

Discrete/Stochastic/Time?
What is known/unknown?

Solve
How do you want to
represent your policy?

Model-based? Model-free?
Learning: Data? Loss?

15

16

17

Two Fundamental Approaches

18

π*(st) = arg min
a

[c(st), a) + V*(st+1)]V*(st) = min
a

[c(st, a) + V*(st+1)]

Vπ(s) = c(s, π(s)) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)] π+(s) = arg min
a

c(s, a) + γ𝔼s′ ∼𝒯(s,a)Vπ(s′)]

Value Iteration

Policy Iteration

Iterate over optimal value

Evaluate value of current policy,
then improve

min() operator in value iteration step

min() operator in policy improvement

How do we scale these approaches?

19

For continuous
MDP (but linear)?

For non-linear MDP? Handle constraints?

The LQR Algorithm

For t = T … 1

Compute gain matrix
 Kt = (R + BTVt+1B)−1BTVt+1A

Initialize VT = Q

Update value
 Vt = Q + KT

t RKt + (A + BKt)TVt+1(A + BKt)

Iterative LQR xt+1 = ∂f
∂x

xt

δxt+
∂f
∂u

ut

δut + f(x*t , u*t)

Affine LQR xt+1 = Atxt + Btut+xoff
t

Strategy: Build up on LQR

 X

Time-varying LQR xt+1 = Atxt + Btut

LQR xt+1 = Axt + But

Dual Game: We control lambdas!

 X

Primal xDual λ

min
x

max
λ

f(x)−λTg(x)

x2

x1

λ1

… What if your MDP is really complex?

20

Large state space, stochastic, continuous actions …

21

Where all did we see covariate shift?

22

Imitation Learning? Model Based RL?

Approximate
Dynamic

Programming? approximate dynamic programming 89

���������

����	
�������
������

����������	������
������

�	��������	������
�������

Figure 8.2.3: Value function
overestimation in value itera-
tion

Bellman backups proceed. Figure 8.2.3 shows an illustration of this effect.
Because the upper half of the state space (which is bad) is overestimated by
the function approximator, policies switch to direct probability mass towards
that state by choosing actions that make arriving at these states more likely.
Error in overestimation of the value function has a cascading effect as we
iterate backwards in time.

We further noted that the pure policy evaluation variant of dynamic pro-
gramming is much more stable– without the max to drive behavior towards
states with high value estimates we are less subject to the amplification of
errors. However, on the surface it seems that we’ve merely pushed the prob-
lem into the policy improvement step. That is, while the estimation of the
action-value function for a current policy becomes stable, the improvement
step would instead drive probability mass towards states-actions that tend to
be over-estimates of quality, leading to instability between iterations of any
approximate policy iteration procedure.

This objection is, in fact, well-founded and approximate policy iteration
algorithms aren’t noted to be more stable or effective than approximate value
iteration counterparts. However, the maintenance of an explicit policy opens
up a new possibility: the ability to manage or mitigate the distribution shift
that occurs when we update the policy.

Conservativity and Trust Regions
A broad class of algorithms, initiated by the seminal development of Con-

servative Policy Iteration (CPI) 16 constrain modification to the current policy 16 S. Kakade and J. Langford. Ap-
proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

to prevent the state-action distribution from changing too radically between
iterations and thus ensure errors don’t explode. The result is algorithms that
are stable and effective, although they can be slower than raw policy iter-
ation. CPI modifies the policy update step to stochastically mix 17 between 17 That is to say, choose with that prob-

ability at each time-step of execution of
the policy.

policies pnew = apnew greedy + (1 � a)pold, where the mixing weight a is
interpreted as the probability of choosing that component. Careful analysis
in 18 ensures a strategy for choosing a that ensures improvement, while in 18 S. Kakade and J. Langford. Ap-

proximately optimal approximate
reinforcement learning. In Proceedings
of the 19th International Conference on
Machine Learning (ICML), 2002

practice a simple line-search strategy can be employed to ensure monotonic
improvement.

This is a somewhat impractical algorithm as it can take many steps and
requires maintenance of a mixture of a number of policies equal to the num-
ber of update steps. Later approaches, including No-Regret Policy Iteration 19 19 S. Ross and J. A. Bagnell. Rein-

forcement and imitation learning via
interactive no-regret learning. arXiv
preprint arXiv:1406.5979, 2014

and the Natural or Covariant Policy Search Approach 20 (and later imple-

20 ; and J. A. Bagnell, A. Y. Ng,
S. Kakade, and J. Schneider. Policy
search by dynamic programming. In
Advances in Neural Information Processing
Systems, 2003

mentations of these like “Trust Region Policy Optimization” 21) manage to

21

keep one policy, albeit a typically stochastic one, but keep the same intuition
of a controlled policy change through the stability of no-regret learning, line

+ηtR(w)

Learning is
a Game!

Follow the leader
is aggressive

Slowly change predictions,
achieve no-regret

No regret solves all!

24

DAgger

DAgger: Iteration 1

 X

[Ross et al’11]

Robot drives π0

Human corrects!

Data

Old Data

Policy
π1AGGREGATE DATA

DAgger for SysID
Conservative

policy iteration

25

26

27

We don’t know the MDP, all we see are traces (s,a,s’)

Model Based:
Learn a model. Plan with the model.

Model Free:
Forget about models. Learn the policy.

Reinforcement Learning: Brass Tacks

Model Free RL: Actor Critic

28

Actor Critic

Policy improvement
of π

Estimates value
functions Qπ

ϕ /Vπ
ϕ /Aπ

ϕ

(Natural) Policy Gradient TD, MC

29

Imitation Learning: Brass Tacks

30

We don’t know the MDP, all we see are human actions (a*)

Learn Cost:
Learn a cost that makes human look cheap, learner look expensive

Learn Values:
Learn Q* that makes human look cheap, learner look expensive

Inverse Optimal Control (Learn Cost)

31

Make human look cheap, learner look expensive

max
ϕ

min
θ

𝔼st,at∼πθ
[Cϕ(st, at)] −𝔼s*t ,a*t ∼π*[Cϕ(ξ)]

Cost of
Learner

Cost of
Expert

32

Estimate Q* from demonstrations, interventions, preferences, ..
and even E-stops!

Q⇤(s, a)
Demonstrations

Interventions

Preferences

E-stops

ℒ(Q*θ)
Loss

Learn Values

33

The Imitation Game

34

min
π

max
Q*

T

∑
t=1

𝔼st∼π[Q*(st, π(st)) − Q*(st, π*(st))]

We have an interactive expert.
Apply PDL in forward direction: roll-in learner, roll-out expert

Use no-regret learning to solve the game! O(ϵT)

The RL Game

35

min
π

max
Qπ

T

∑
t=1

𝔼s∼π*Qπ(s, π(s)) − Qπ(s, π*(s))

We don’t have interactive expert.
Apply PDL in reverse direction: roll-in expert, roll-out learner

Use no-regret learning to solve the game! O(ϵT2)

A grand unification of IL / RL Games?

A simple question:
Can learning help us build better planners?

A prospective grad student:
“Is planning just A*?”

Motion Planning: Dealing with expensive collision checking

39

Trivial Medium Expensive

(Schluman et al.)

(Ross et al.)

(LaValle’06, Bialkowski’11,
Hauser’15, ……)

Create a graph

General framework for motion planning

Search the graph

Interleave

Any planning
algorithm

Create graph Search graph Interleave

General framework for motion planning

RRT*-XYZ
e.g. fancy
random
sampler

e.g. fancy
heuristic

e.g. fancy
way of

densifying
⇥ ⇥=

Learn
sampler!

Learn
heuristic!

Learning a Sampler

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧
2: for i = 1 to N do

3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do

6: Sample world map � ⇠ P (�)
7: Sample (vs, vg) ⇠ P (vs, vg)
8: Invoke clairvoyant oracle planner

to compute Q
⇡OR(�, v) 8 v 2 V

9: Sample uniformly k timesteps {t1, t2, . . . , tk}
where each ti 2 {1, . . . , T}

10: Rollout search with
⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for Q
OR (�, at)

13: Di Di [{ t, at, t, Q
OR (�, at)}

14: Aggregate datasets: D D
S

Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR (�, at)}. The policy ⇡mix,i is rolled out till the
end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select
is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history t

Execute a random action at

and featurize (t, at) as ft

Roll out with oracle ⇡OR

at

Fig. 6. An overview of SAIL in search based planning where a learner ⇡̂ is trained to imitate a clairvoyant oracle ⇡OR. There are 4 key steps. Step 1: A
world map � is sampled from database representing P (�) along with start goal pair (vs, vg). Step 2: A mixture policy ⇡mix, of the learner and oracle is
used to roll-in on � to a timestep t to get history t which is the combination of open list, closed list and invalid edges. Step 3: A random vertex at from
the open list is chosen and (t, at) is featurized as ft. Step 4: A clairvoyant oracle ⇡OR is given full access to world map � to compute the cumulative
cost to go Q⇡OR . The pair (ft, Q⇡OR) is added to data to update the learner. This process is repeated to train a sequence of learners.

allows us a better roll-in procedure where the oracle and
learner are interleaved. We adapt the AGGREVATE framework
to present an algorithm, Search as Imitation Learning (SAIL).

Algorithm 5 SAIL (P (�), P (vs, vg), k)

1: Initialize D ;, ⇡̂1 to any policy in ⇧
2: for i = 1 to N do

3: Initialize sub dataset Di ;
4: Collect mk data points as follows:
5: for j = 1 to m do

6: Sample world map � ⇠ P (�)
7: Sample (vs, vg) ⇠ P (vs, vg)
8: Invoke clairvoyant oracle planner

to compute Q
⇡OR(�, v) 8 v 2 V

9: Sample uniformly k timesteps {t1, t2, . . . , tk}
where each ti 2 {1, . . . , T}

10: Rollout search with
⇡mix,i = �i⇡OR + (1� �i)⇡̂i

11: At each t 2 {t1, t2, . . . , tk} pick a random
action at to get corresponding (t, v)

12: Query oracle for Q
OR (�, at)

13: Di Di [{ t, at, t, Q
OR (�, at)}

14: Aggregate datasets: D D
S

Di

15: Train cost-sensitive classifier ⇡̂i+1 on D
16: Return best ⇡̂i on validation

Alg. 5, describes the SAIL framework which iteratively
trains a sequence of policies (⇡̂1, ⇡̂2, . . . , ⇡̂N). For training
the learner, we collect a dataset D as follows - At every
iteration i, the agent executed m different searches (Alg. 1).
For every search, a different world � and the pair (vs, vg) is
sampled from a database. The agent then rolls-out a search
with a mixture policy ⇡mix,i which blends the learner’s cur-
rent policy, ⇡̂i and the oracle’s policy, ⇡OR using blending
parameter �i. During the search execution, at every timestep
in a set of k uniformly sampled timesteps, we select a random

action from the set of feasible actions and collect a datapoint
{ t, at, t, Q

OR (�, at)}. The policy ⇡mix,i is rolled out till the
end of the episode and all the collected data is aggregated with
dataset D. At the end of N iterations, the algorithm returns
the best performing policy on a set of held-out validation
environment or alternatively, a mixture of (⇡̂1, ⇡̂2, . . . , ⇡̂N).
Fig. 6 illustrates the SAIL framework.

Note that while the oracle is invoked once per �, we obtain
k datapoints - this is critical for speeding up training. We
also note that even though the time complexity of Select
is O (|Ot|) at timestep t, SAIL can have better overall com-
plexity if it can achieve a squared reduction in number of
expansions compared to uninformed search as discussed more
in Appendix G.

VI. EXPERIMENTS ON INFORMATIVE PATH PLANNING

In this section, we extensively evaluate our approach on
a set of 2D and 3D informative path planning problems
across a spectrum of synthetic and real world environments.
We examine a class of informative path planning problem
where a robot, equipped with a range limited sensor, pos-
sibly constrained by time and fuel resources, is tasked with
3D reconstruction of structures in the world. We choose a
variety of environments to highlight the importance of adaptive
behaviours for information gathering. Our implementation is
open sourced for both MATLAB and C++ (https://bitbucket.
org/sanjiban/matlab learning info gain).

A. Problem Details
We consider both 2D and 3D informative path planning

problems. The world map � is represented as a 2D or 3D
binary grid, i.e. a grid cell is either occupied or free. The
candidate set of sensing locations V is generated by uniformly
randomly sampling nodes in the configuration space of the
robot. For 2D problems, the configuration space of the robot
is SE(2), for 3D it is SE(3). We assume for simplicity that
the robot can teleport between any two nodes vi and vj and

Learn a Heuristic

43

search tree imitate true
cost-to-go

train heuristic

SAIL SL CEM QL hEUC hMAN A* MHA*

alternating_gap 0.039 0.432 0.042 1.000 1.000 1.000 1.000 1.000

single_gap 0.158 0.214 0.057 1.000 0.184 0.192 1.000 0.286

shifting_gap 0.104 0.464 1.000 1.000 0.506 0.589 1.000 0.804

forest 0.036 0.043 0.048 0.121 0.041 0.043 1.000 0.075

bugtrap_forest 0.147 0.384 0.182 1.000 0.410 0.337 1.000 0.467

gaps_forest 0.221 1.000 1.000 1.000 1.000 1.000 1.000 1.000

maze 0.103 0.238 0.479 0.399 0.185 0.171 1.000 0.279

multiple_bugtrap 0.479 0.480 1.000 0.835 0.648 0.617 1.000 0.876

Baseline Learning Baseline HandcraftedOurs

44

Open Challenges

