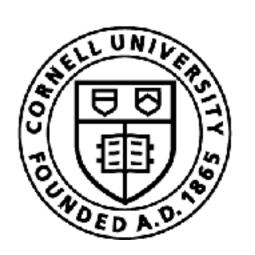
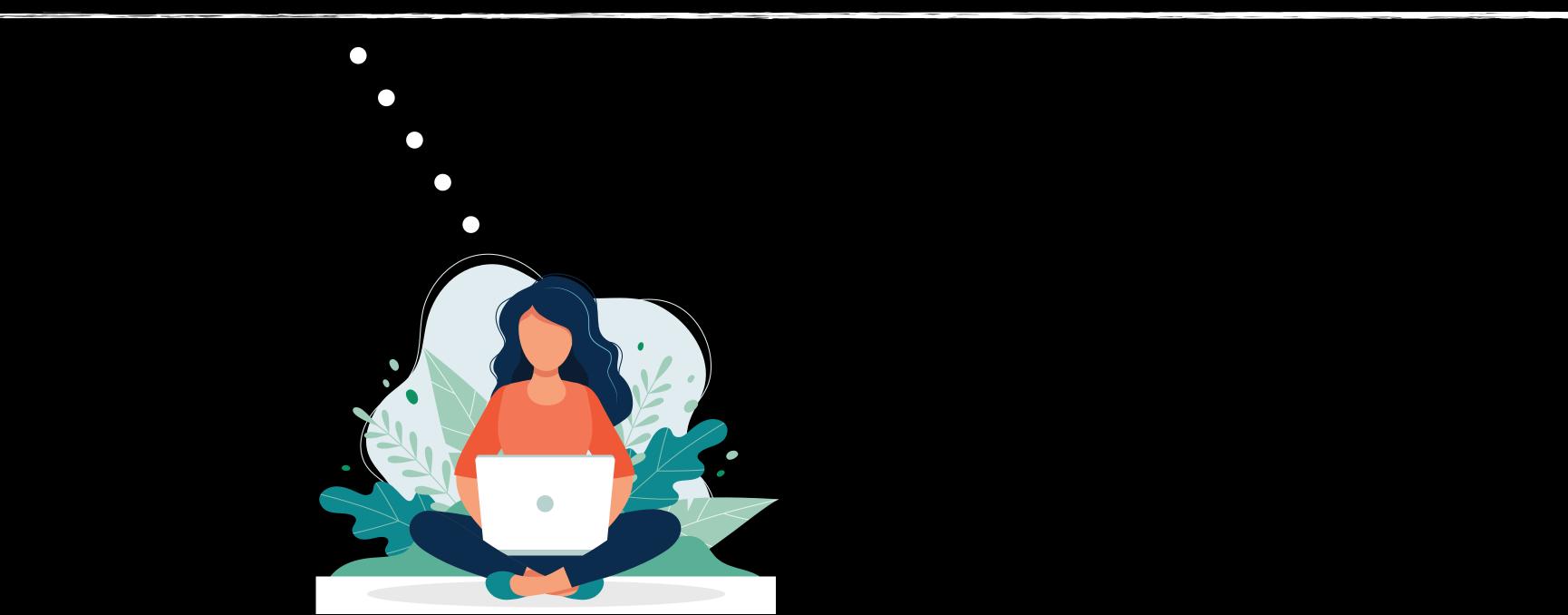
Learning for Robot Decision Making: The Big Picture

Sanjiban Choudhury



How should robots learn to make good decisions?



WHY ask this question?

Take any robot application

Solve MDPs using an all-purpose toolkit

(Imitation/Reinforcement learning, Model based/free)

Deploy learners in real-world (Safety, distribution shift, value alignment)

HOW can we answer this question?

How do you want to represent your policy? Model-based? Model-free? Learning: Data? Loss?

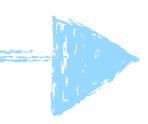
Solve

Formulate

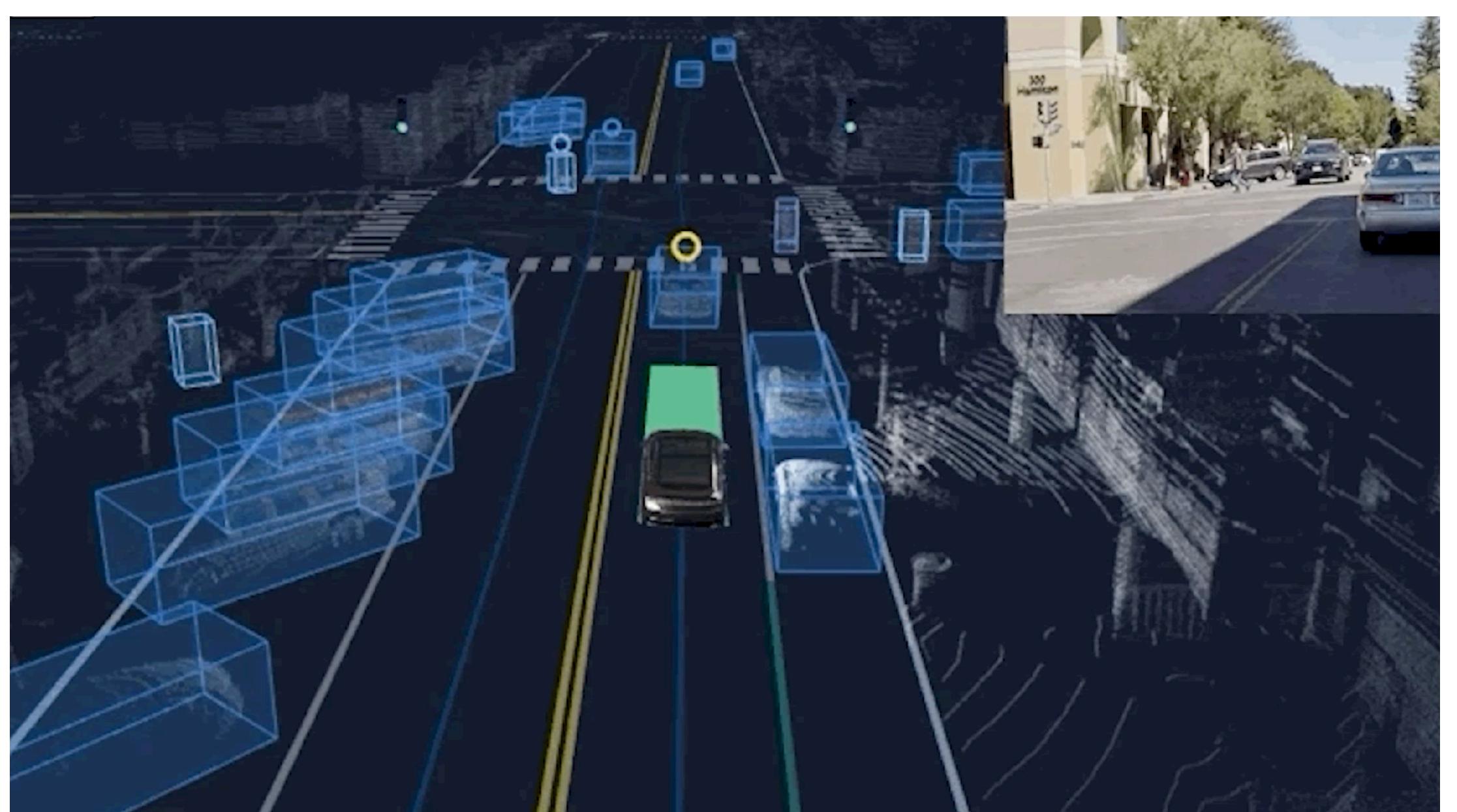
What is the MDP? Discrete/Stochastic/Time? What is known/unknown?

Application

What is the robot? What is the task? What are the metrics? What is good enough?



Let's solve the Unprotected Left Turn



Let's solve the Unprotected Left Turn

How do you want to represent your policy? Model-based? Model-free? Learning: Data? Loss?

Solve

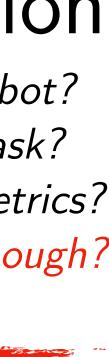
Formulate

What is the MDP? Discrete/Stochastic/Time? What is known/unknown?

Application

What is the robot? What is the task? What are the metrics? What is good enough?

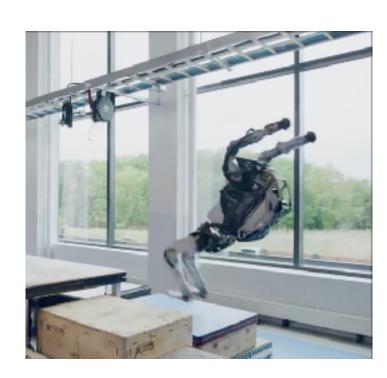
Backward₈

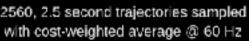


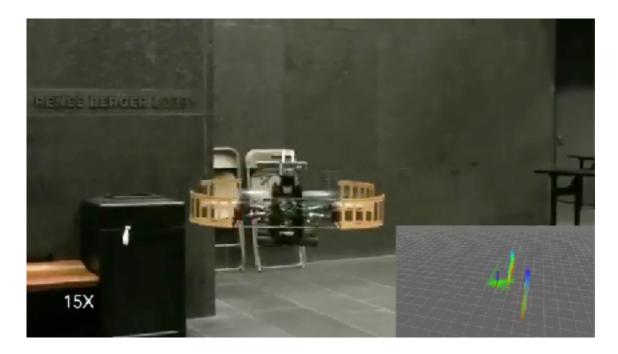
We Can Do It!

POST FEB. 15 TO FEB. 28

We have worked through many applications in this class ...

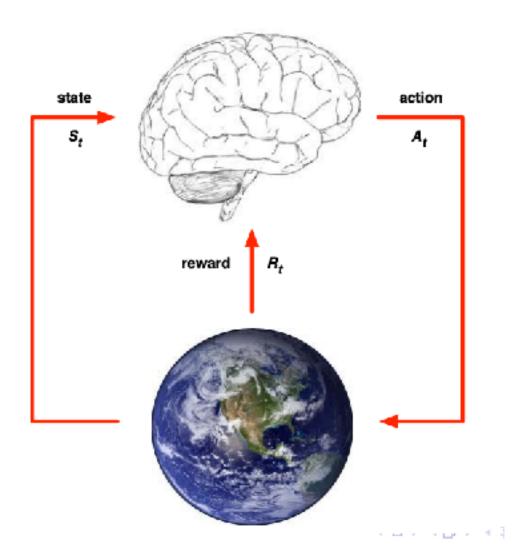






Model Free

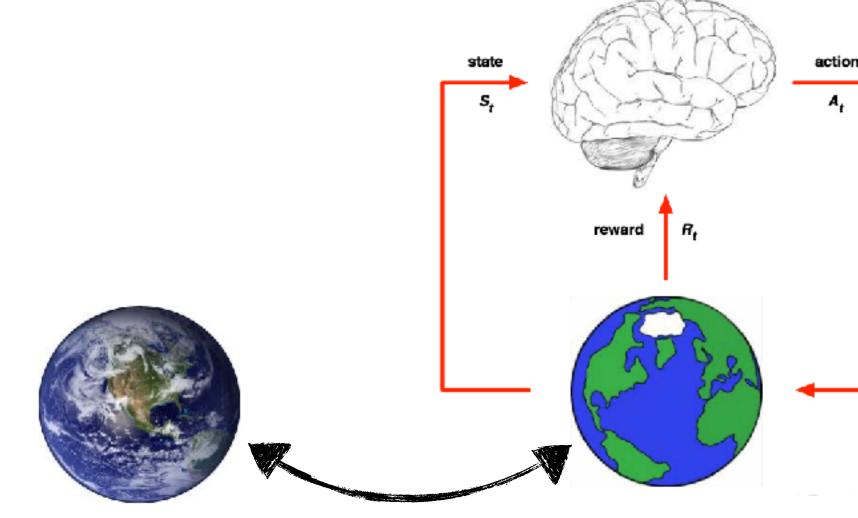
Directly learn π or Q(s, a)

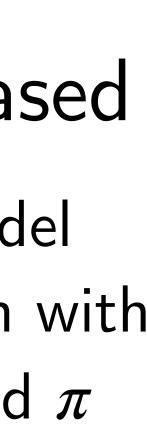


Model-Based OR Model Free?

Model Based

Learn a model P(s' | s, a), plan with model to find π





Model Free

There exists a good enough reactive policy

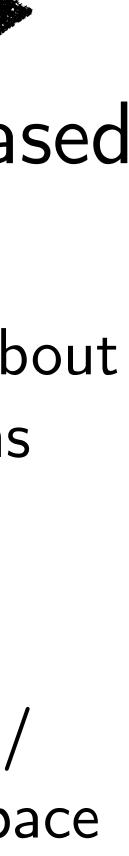
State space is too big to search exhaustively

Model-Based OR Model Free?

Model Based

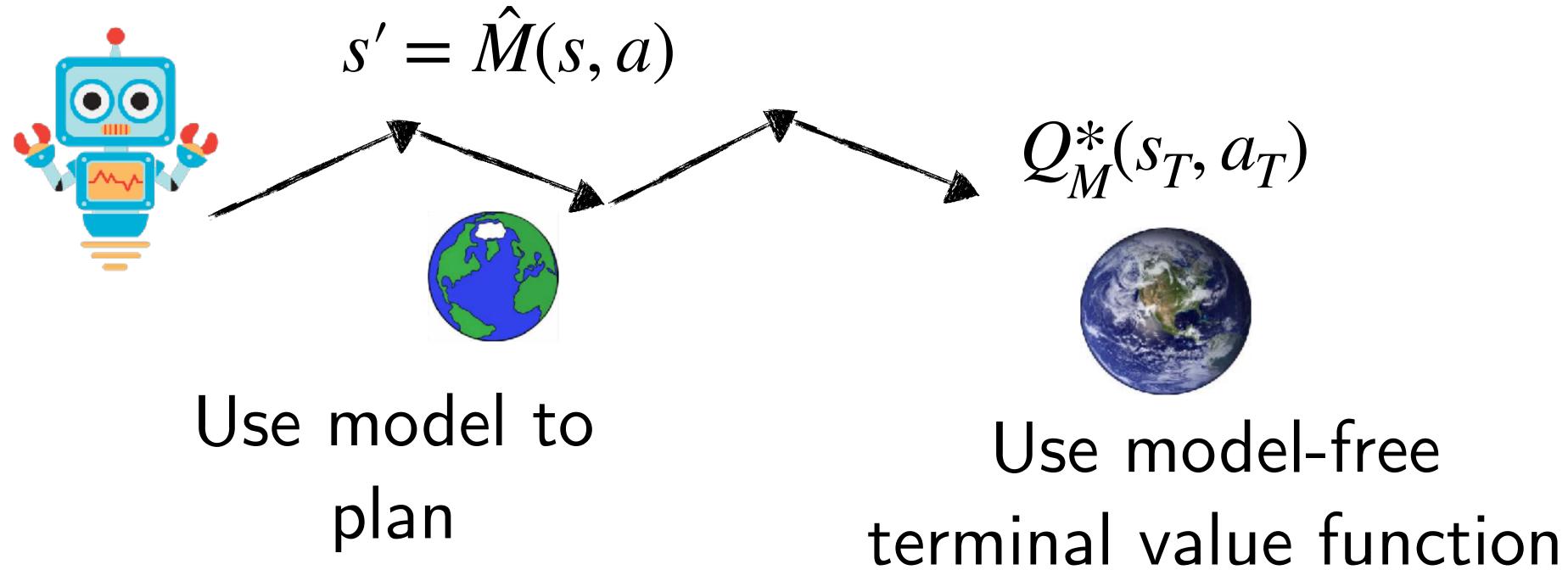
You need to reason about many likely options

Small state space / compressible state space



Model-Based OR AND Model Free

Model Based



plan

Model Free

HOW can we answer this question?

How do you want to represent your policy? Model-based? Model-free? Learning: Data? Loss?

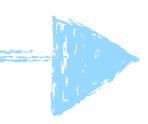
Solve

Formulate

What is the MDP? Discrete/Stochastic/Time? What is known/unknown?

Application

What is the robot? What is the task? What are the metrics? What is good enough?



HOW can we answer this question?

How do you want to represent your policy? Model-based? Model-free? Learning: Data? Loss?

Forward

Goal

Minimize value difference between robot and the human

PDI

Apply Bellman, express perf. difference as sum of Q value differences on states the robot visits

Q values are not known, must be *estimated* from feedback from human or the world. Create a game between robot policy and Q value estimate, solve via no-regret online learning

Solve

Formulate

What is the MDP? Discrete/Stochastic/Time? What is known/unknown?

Application

What is the robot? What is the task? What are the metrics? What is good enough?

Backward

A Game

14



max

 Q^*

ACTION

VALUE

1=1

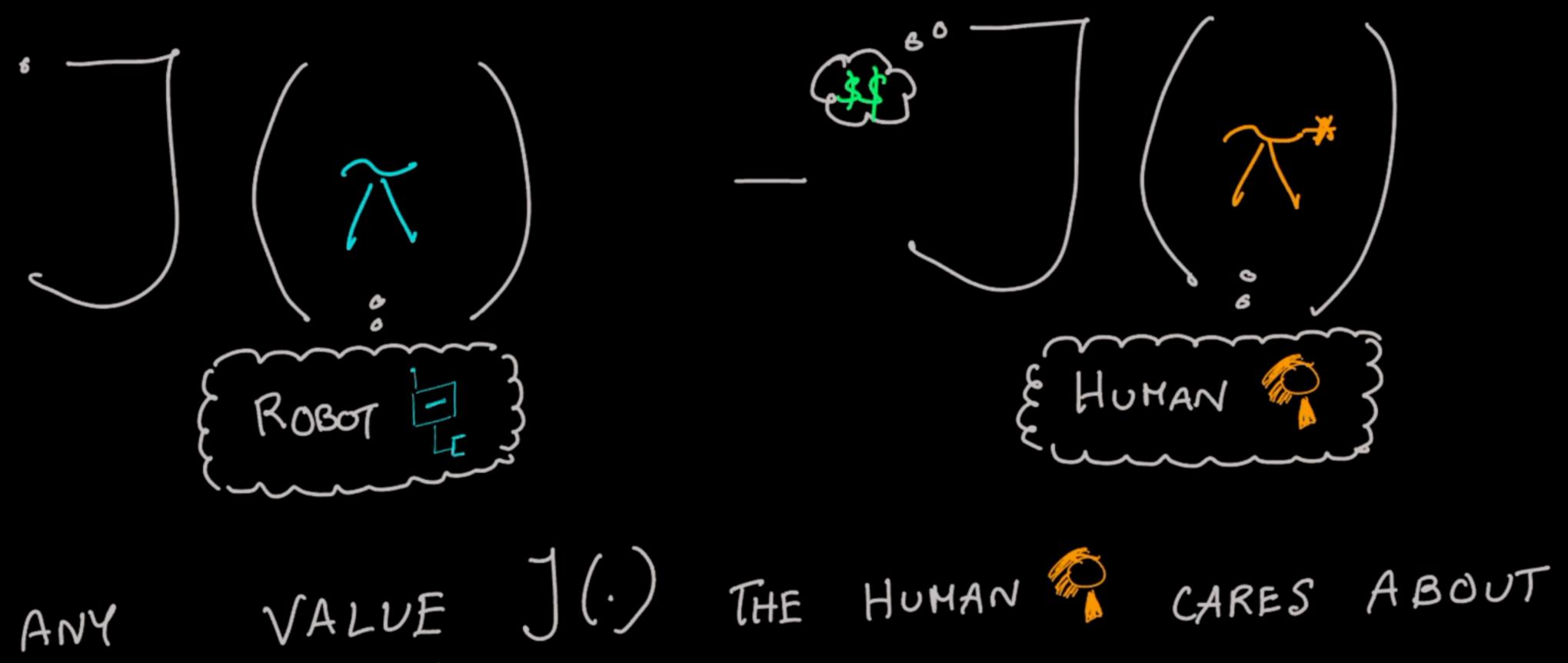
5 Leves

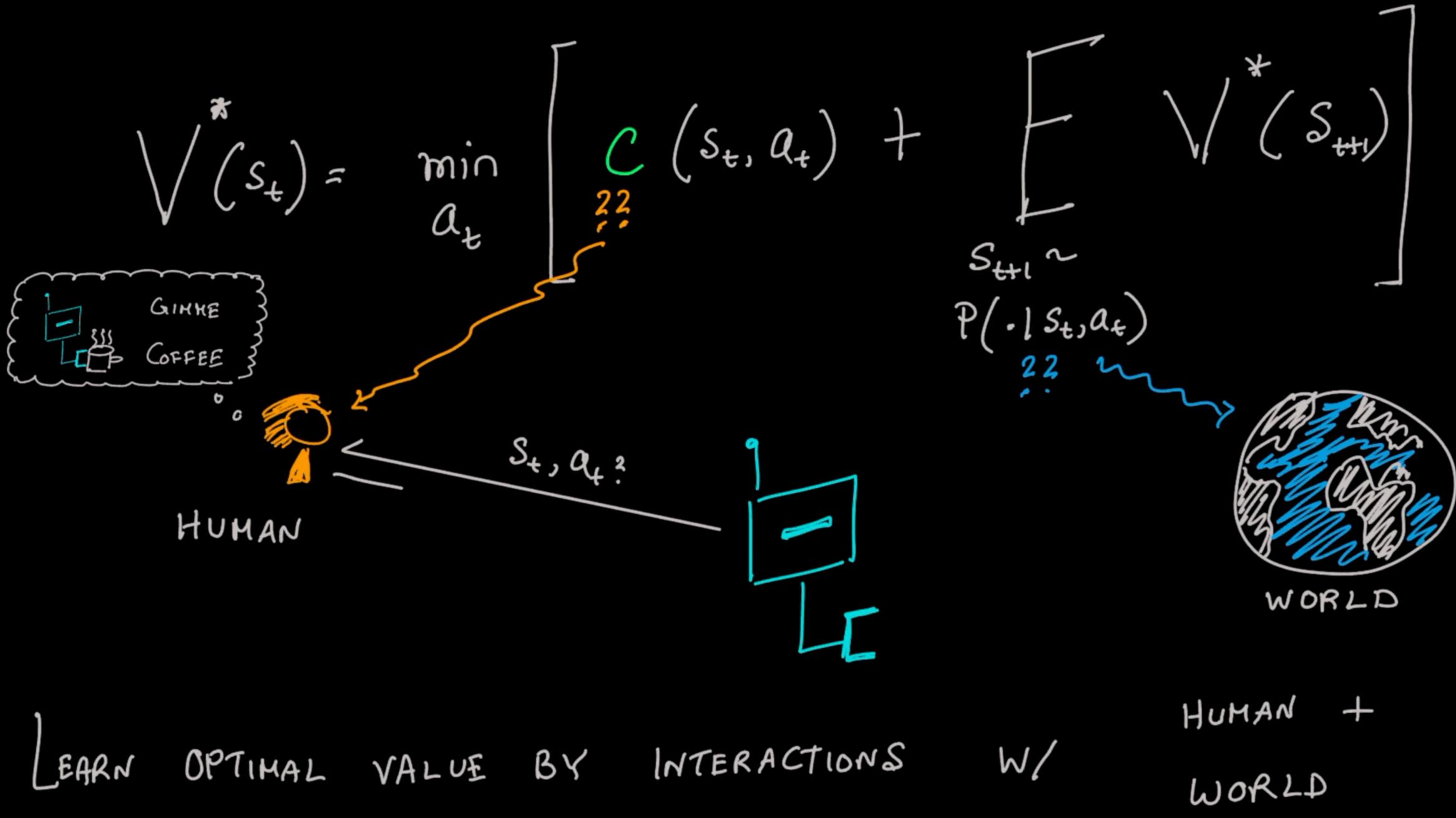
 \sim $\left(S, \pi^{*} S \right)$ $(s, \pi s)$ — (()

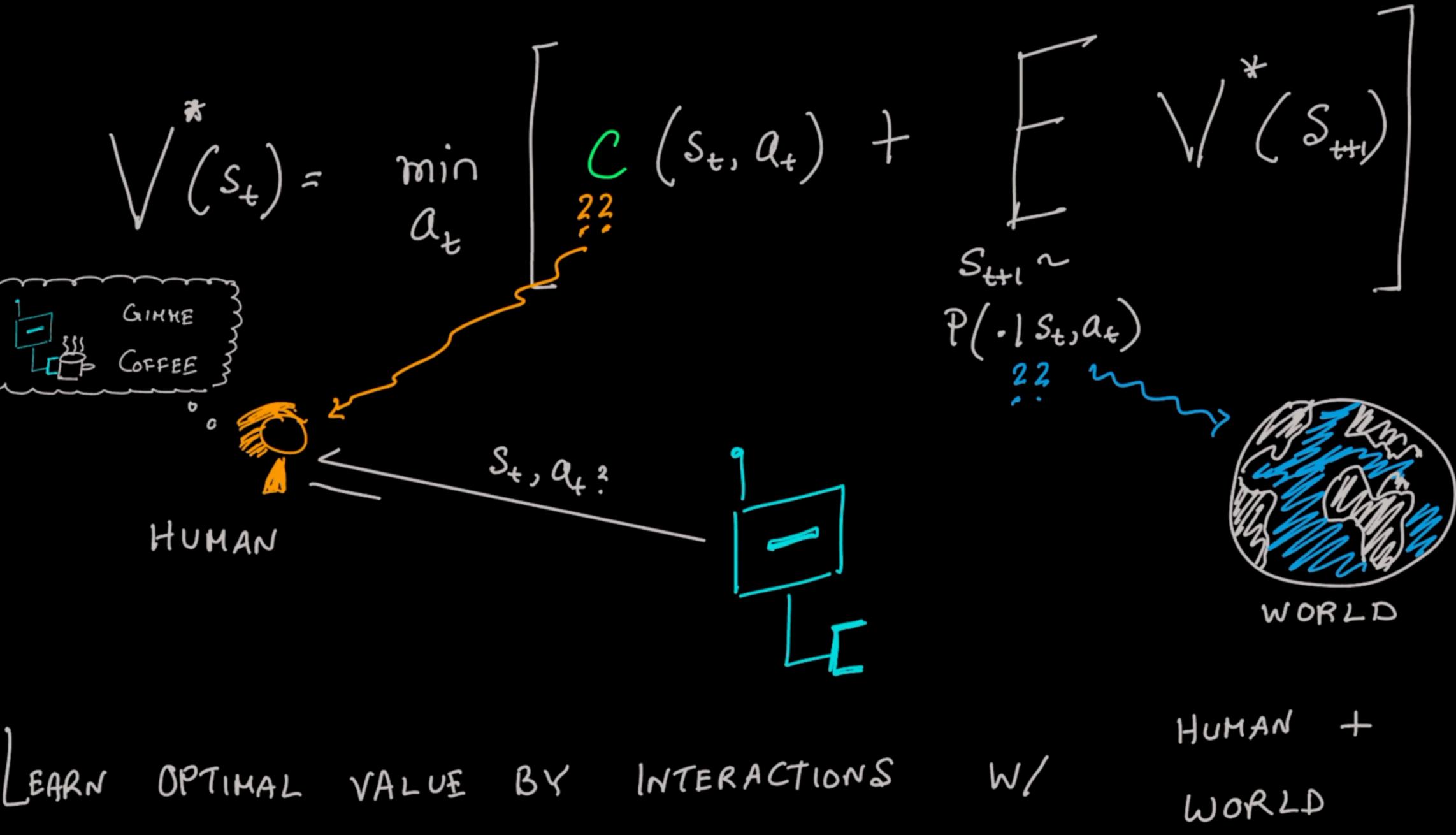
A POLICY $T: S \rightarrow A$ such that $T \neq E$ FIND VALUE ROBOT FOR

\$\$

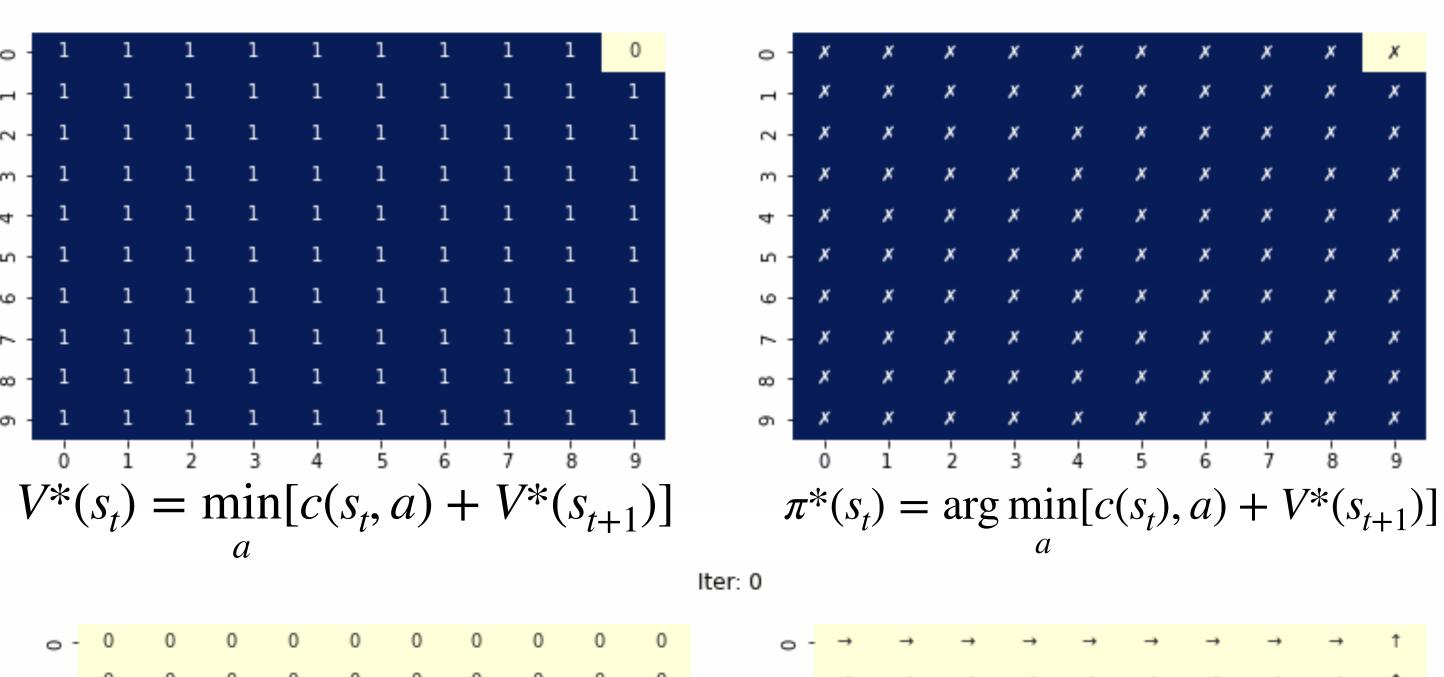
DIFFERENCE







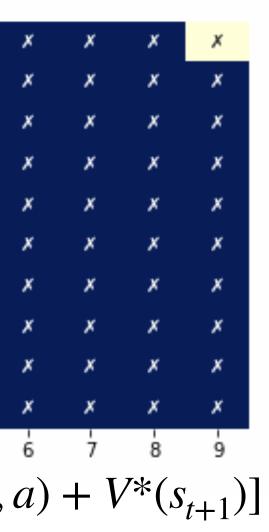
Two Fundamental Approaches



Time: 29

ч.	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
m ·	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
ц.	0	0	0	0	0	0	0	0	0	0
. و	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
00	0	0	0	0	0	0	0	0	0	0
σ.	0	0	0	0	0	0	0	0	0	0
	ó	i	ź	ż	4	5	6	ł	8	9
$V^{\pi}(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')]$										

 $\pi^+(s) = \arg\min c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{T}(s, a)} V^{\pi}(s')$



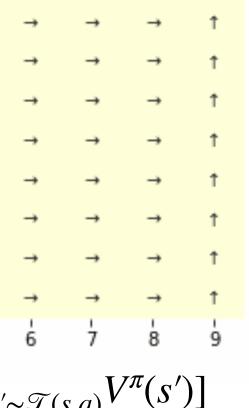
Value Iteration

Iterate over *optimal* value min() operator in value iteration step

Policy Iteration

Evaluate value of current policy, then improve

min() operator in policy improvement



18

For continuous MDP (but linear)?

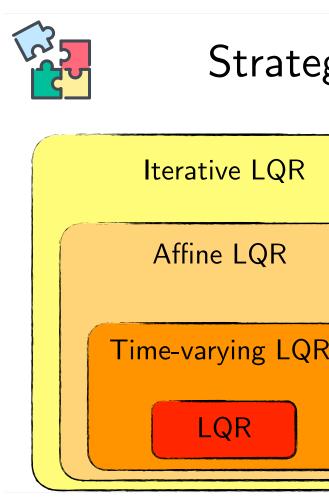
The LQR Algorithm

Initialize $V_T = Q$

For $t = T \dots 1$

Compute gain matrix $K_{t} = (R + B^{T} V_{t+1} B)^{-1} B^{T} V_{t+1} A$

Update value $V_{t} = Q + K_{t}^{T}RK_{t} + (A + BK_{t})^{T}V_{t+1}(A + BK_{t})$



How do we scale these approaches?

For non-linear MDP? Handle constraints?

gy: Build up on LQR

$$x_{t+1} = \frac{\partial f}{\partial x} \bigg|_{x_t} \delta x_t + \frac{\partial f}{\partial u} \bigg|_{u_t} \delta u_t + f(x_t^*, u_t^*)$$

$$x_{t+1} = A_t x_t + B_t u_t + x_t^{off}$$

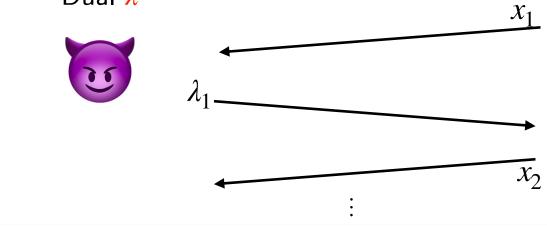
$$x_{t+1} = A_t x_t + B_t u_t$$

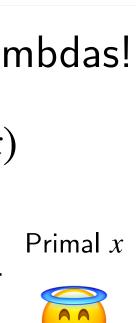
$$x_{t+1} = A x_t + B u_t$$

Dual Game: We control lambdas!

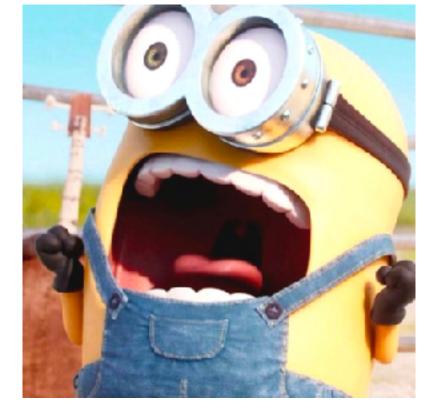
$$\min_{x} \max_{\lambda} f(x) - \lambda^T g(x)$$

Dual λ

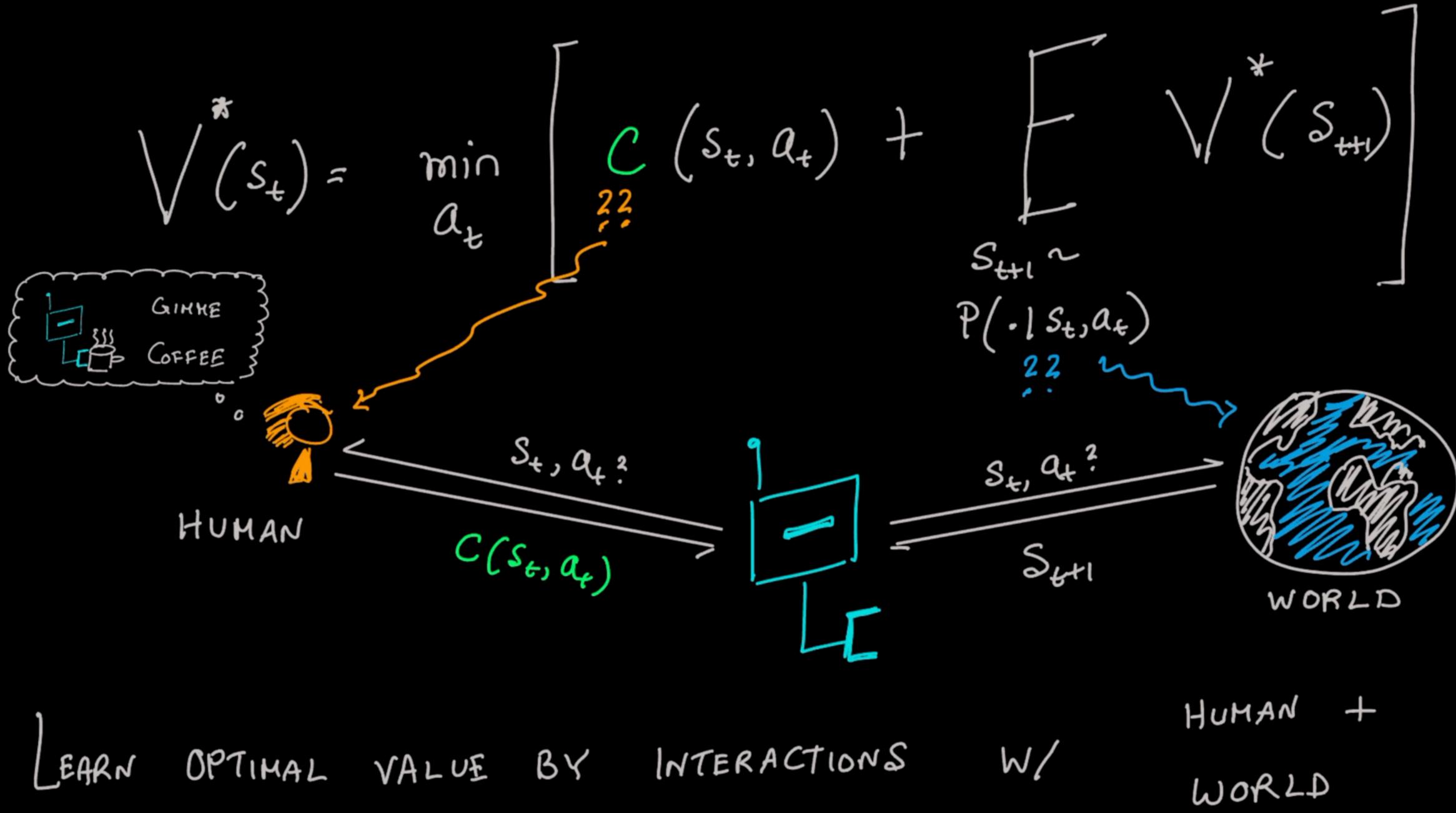


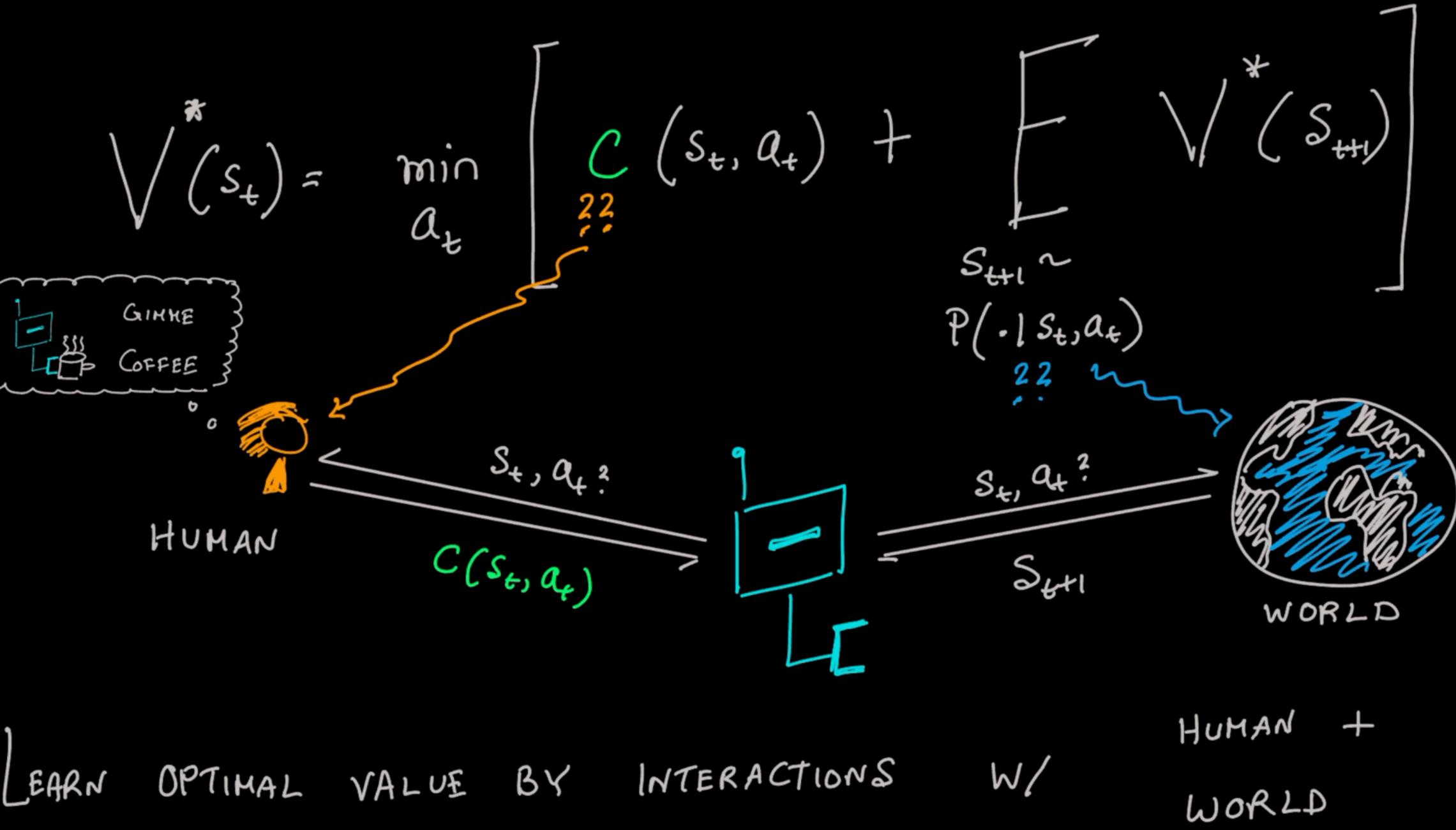


... What if your MDP is really complex?



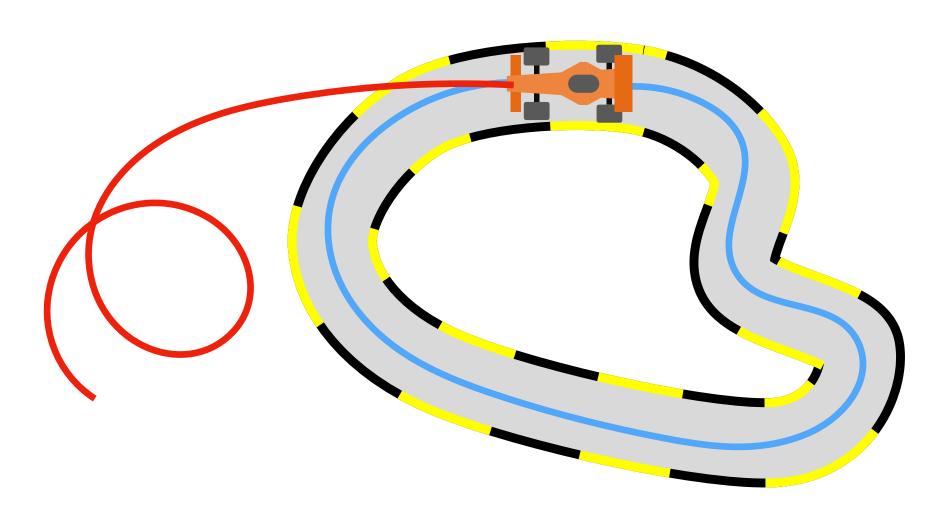
Large state space, stochastic, continuous actions ...





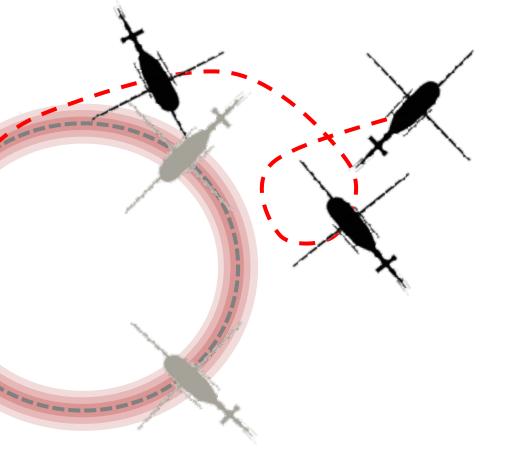
Where all did we see covariate shift?

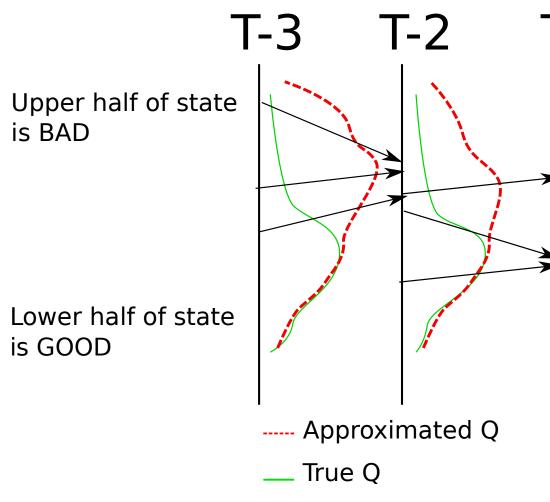
Imitation Learning?



Model Based RL?

Approximate Dynamic Programming?





is BAD

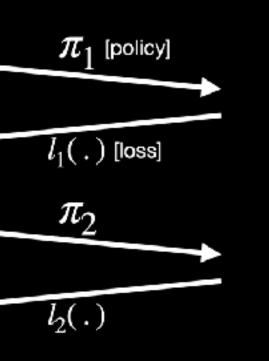
Learner Initialize policy

Update policy

Follow the leader is aggressive

Interactive Learning

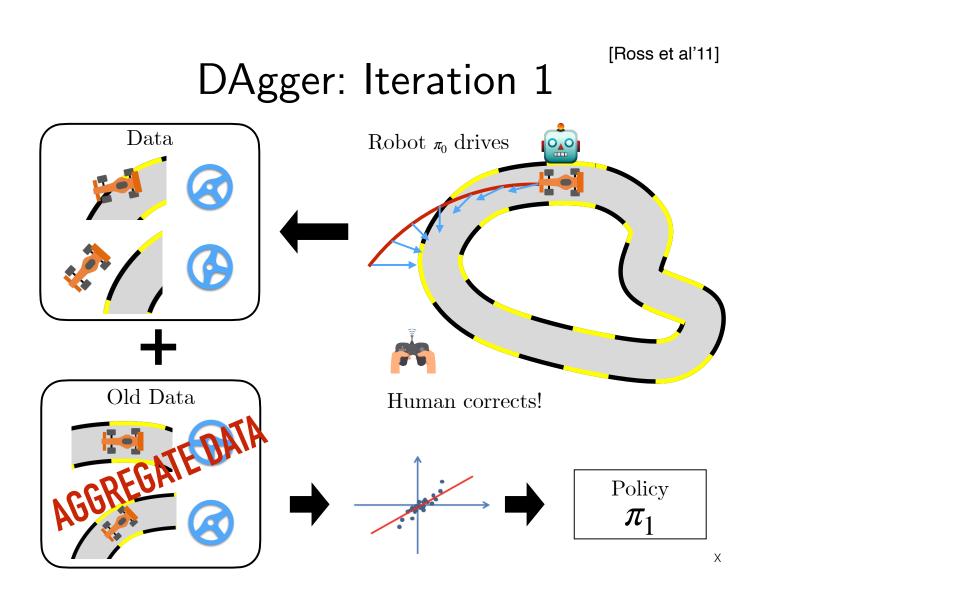
Adversary



Learning is a Game!

Slowly change predictions, achieve no-regret

DAgger

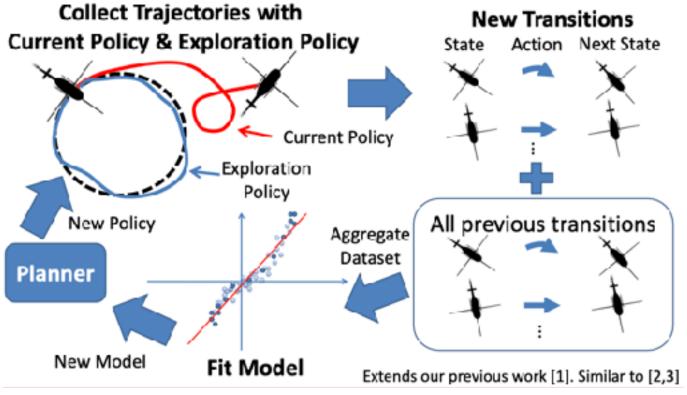


New Palicy Planner New Model

No regret solves all!

DAgger for SysID

Conservative policy iteration



Idea 1: Conservative Policy Iteration (CPI)

$$\pi' = (1 - \alpha)\pi + \alpha \pi_{greed}$$

_	Approx	imately	Optima	d App
	n Kakade hy Computat	ional Neuro	activace Unit,	UCL, La
	Langford	Department	. Camerica	Wellow Do

Mix in old policy and greedy policy

Can prove that performance difference is bounded by

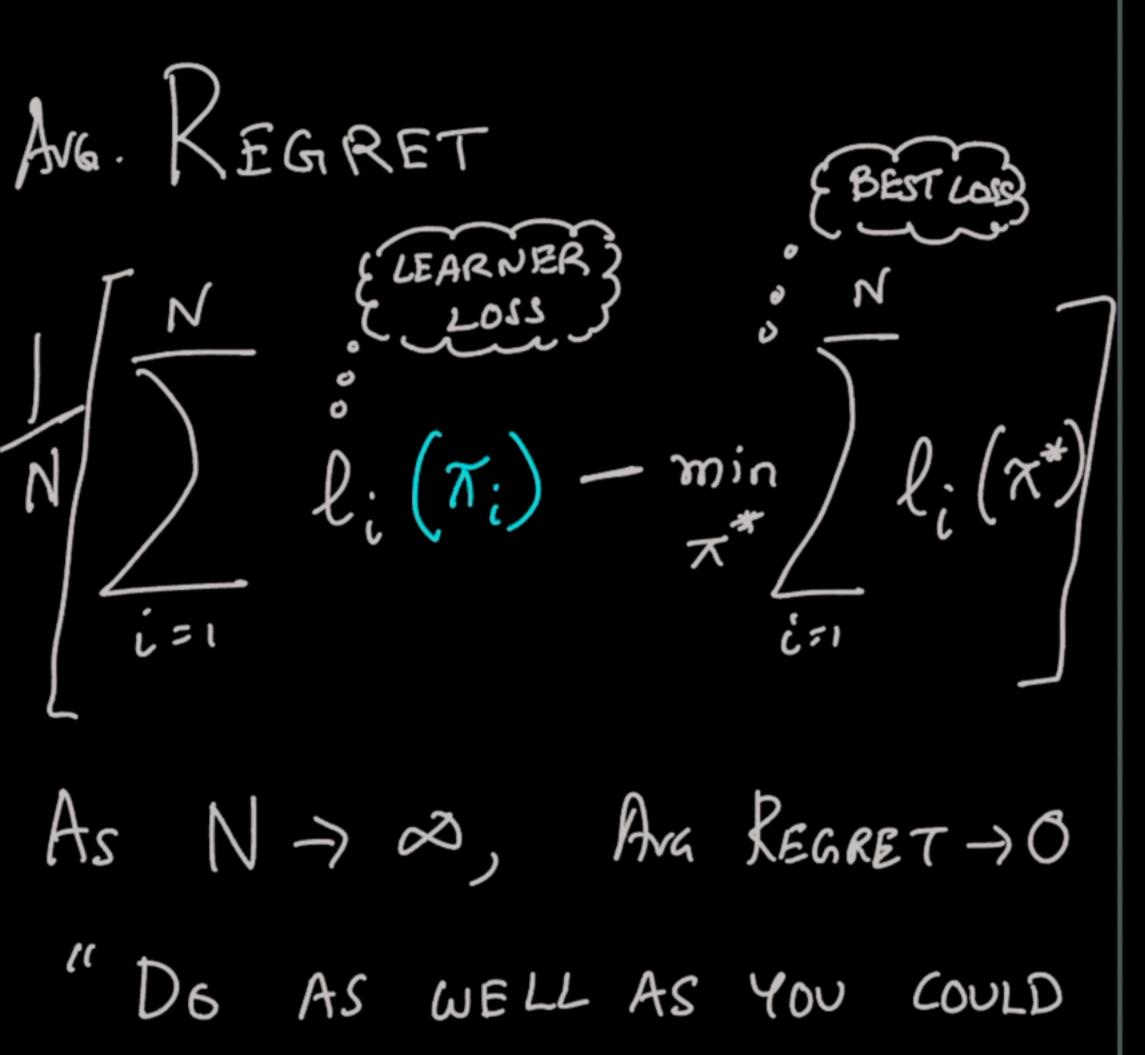
$$V^{\pi'}(s) - V^{\pi}(s) \ge \alpha A_{greedy} - 2\alpha^2 \frac{\gamma}{1 - \gamma}$$

How much greedy policy improves based on estimate

How much distribution shift hurts!

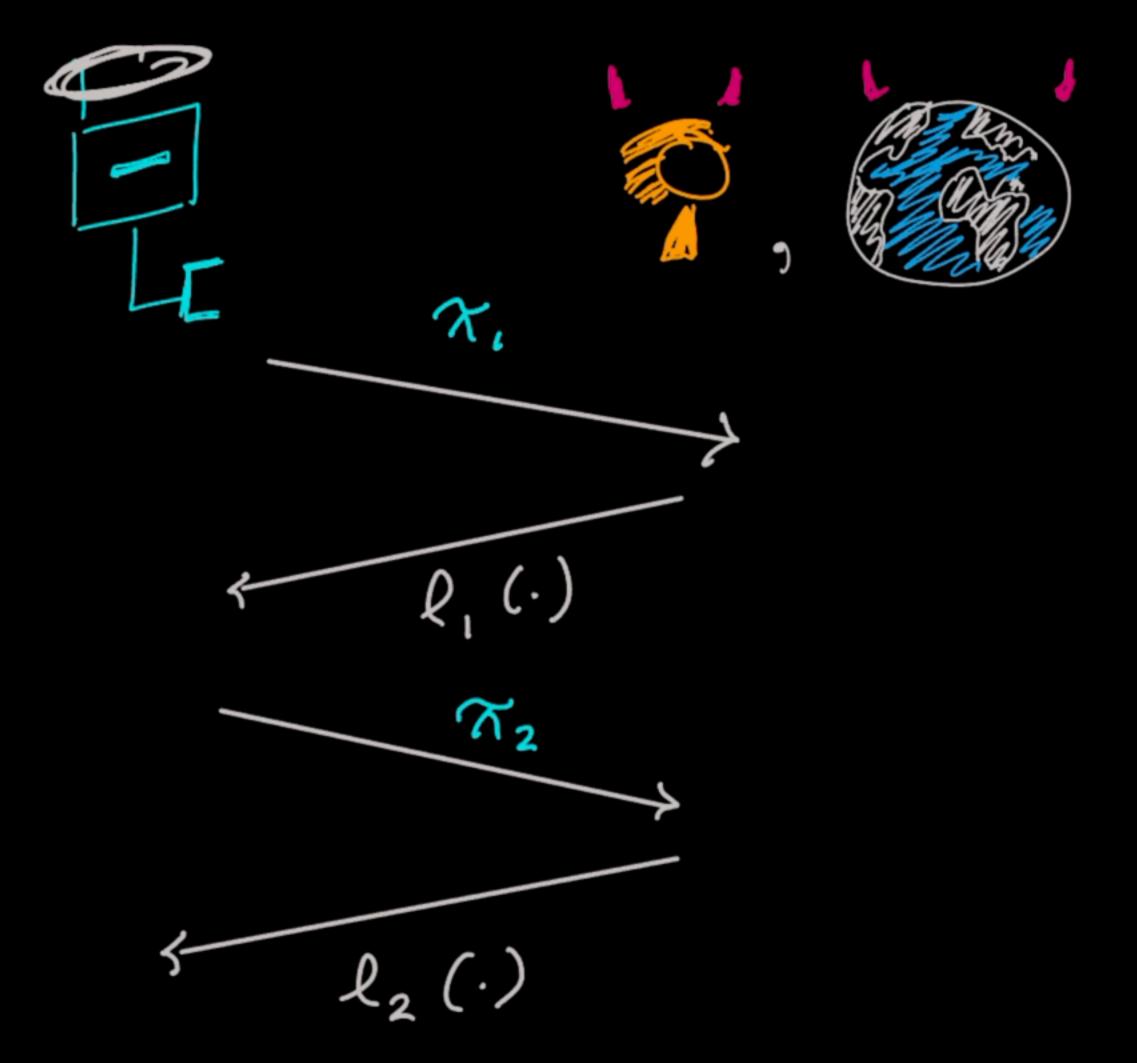
GIOAL:

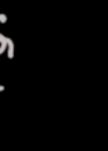
MINIMIZE

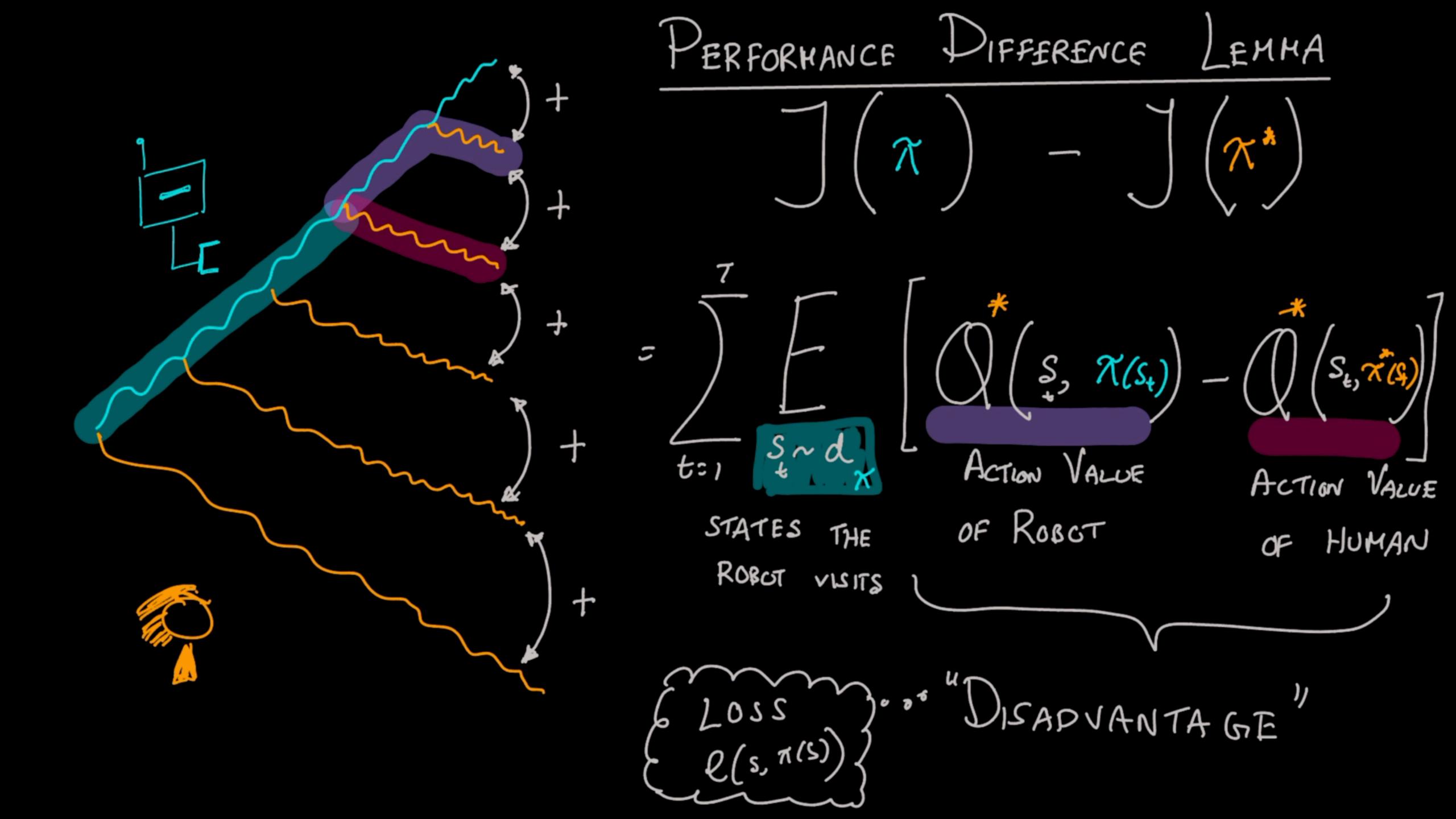


HAVE IF YOU HAD ALL THE DATA UPFRONT"

NUNE LEARNING







Reinforcement Learning: Brass Tacks

We don't know the MDP, all we see are traces (s,a,s')

Model Based: Learn a model. Plan with the model.

Model Free: Forget about models. Learn the policy.

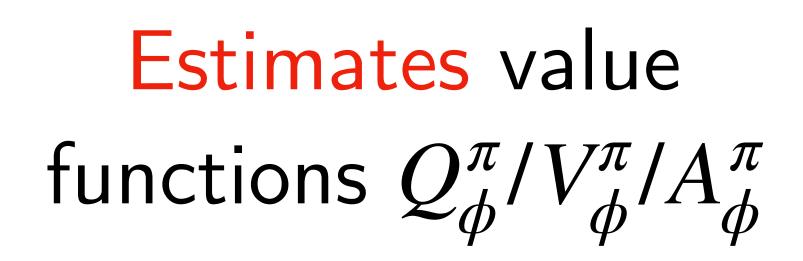
Model Free RL: Actor Critic

Actor

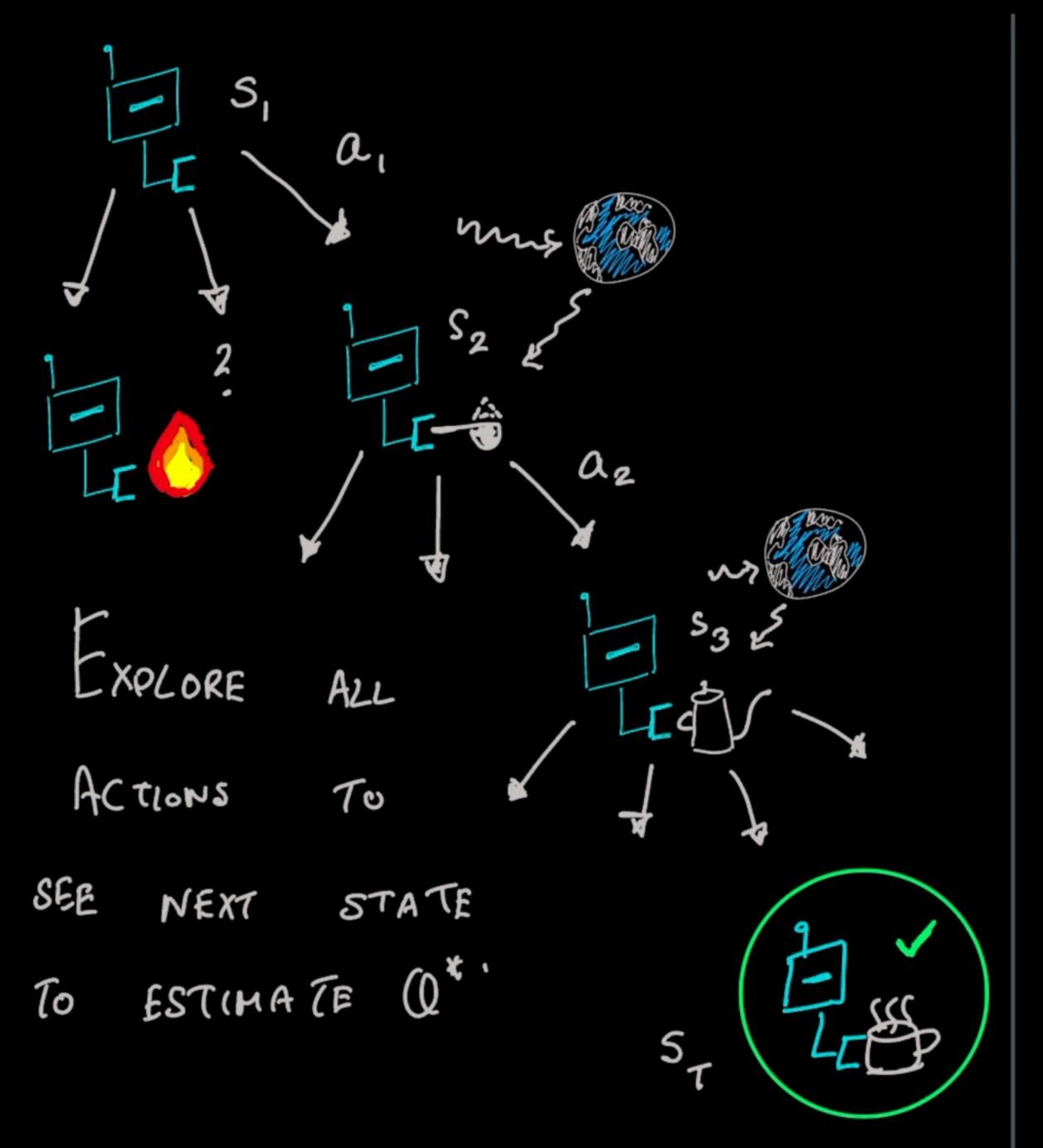
Policy improvement of π

(Natural) Policy Gradient

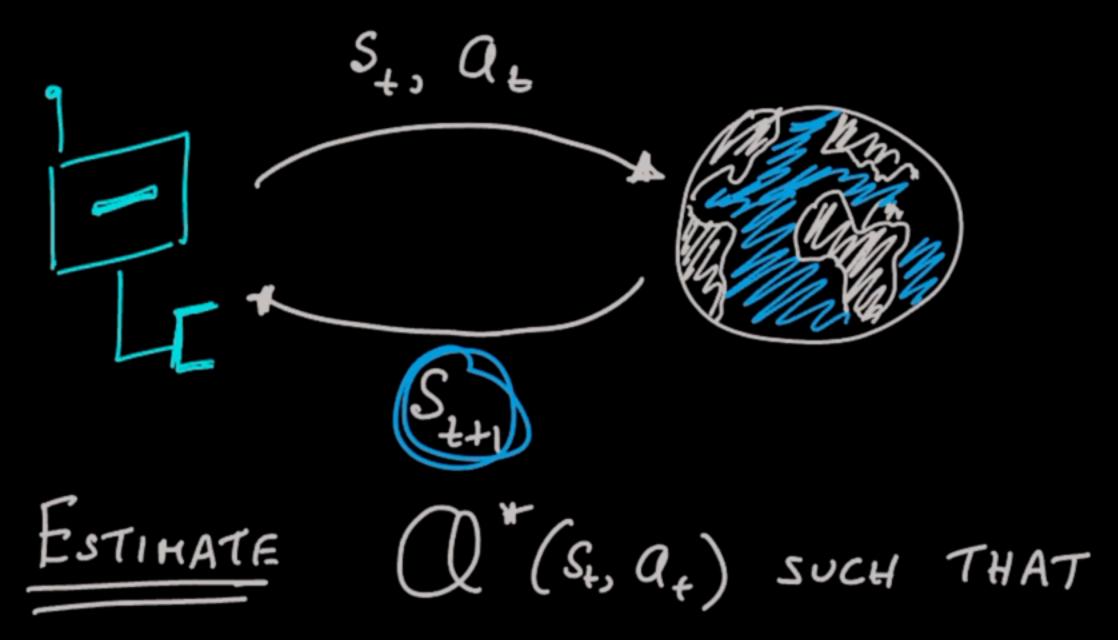
Critic



TD, MC

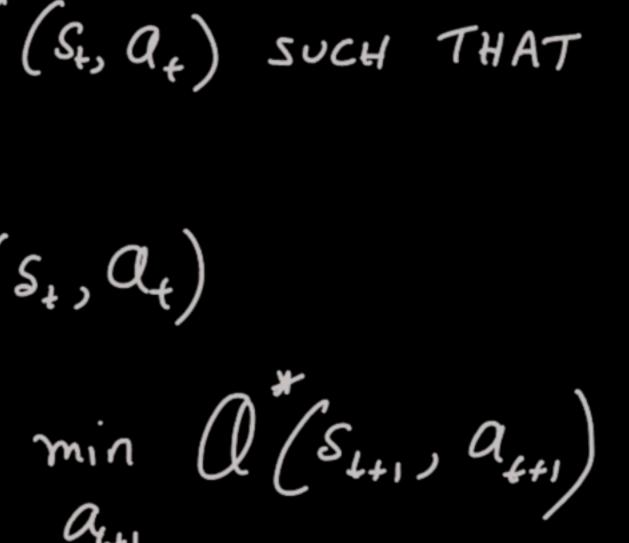


REINFORCEMENT LEARNING



 $\left(\left(\begin{array}{c} \mathbf{x} \\ (s_{\star}, a_{\star}) = C\left(s_{\star}, a_{\star} \right) \right) \right) = C\left(s_{\star}, a_{\star} \right)$

i.e. BELLMAN + F min GINSISTENT Strip atti



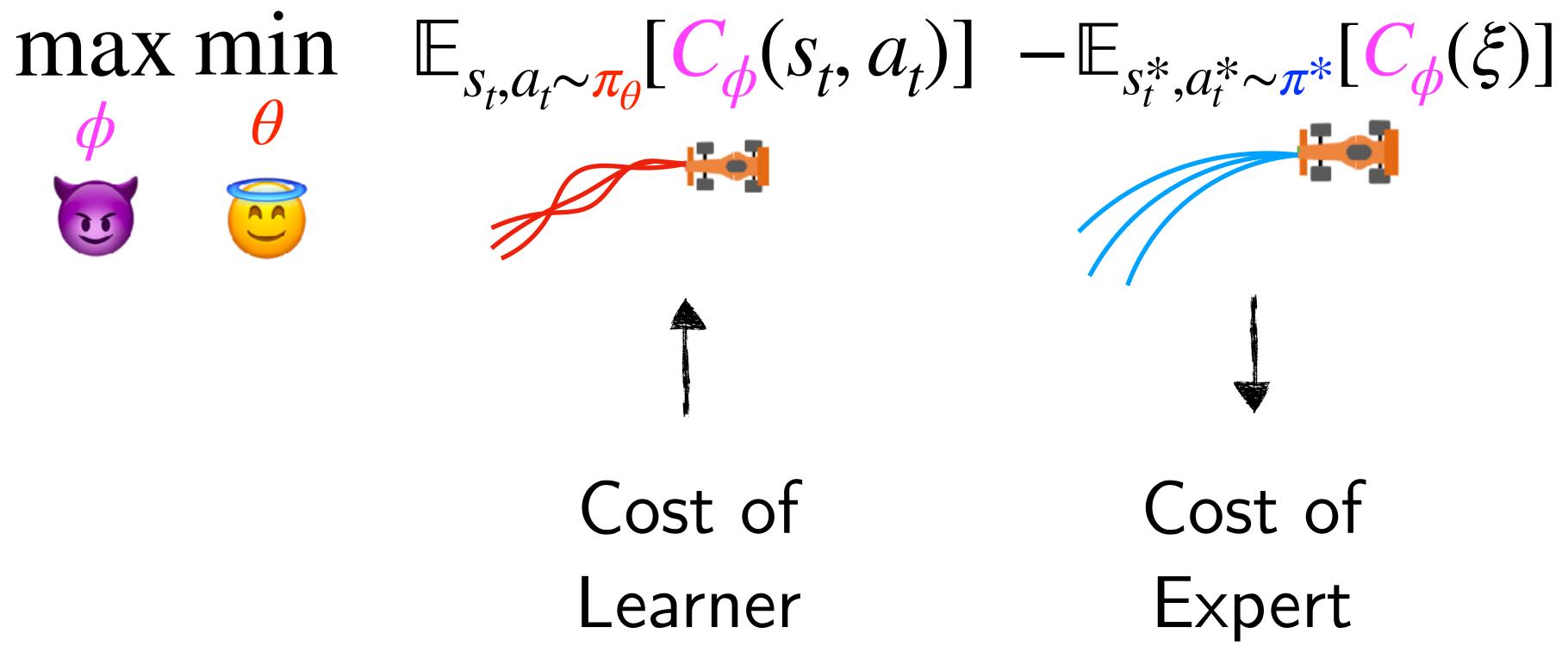
Imitation Learning: Brass Tacks

We don't know the MDP, all we see are human actions (a*)

Learn Cost: Learn a cost that makes human look cheap, learner look expensive

Learn Values: Learn Q* that makes human look cheap, learner look expensive

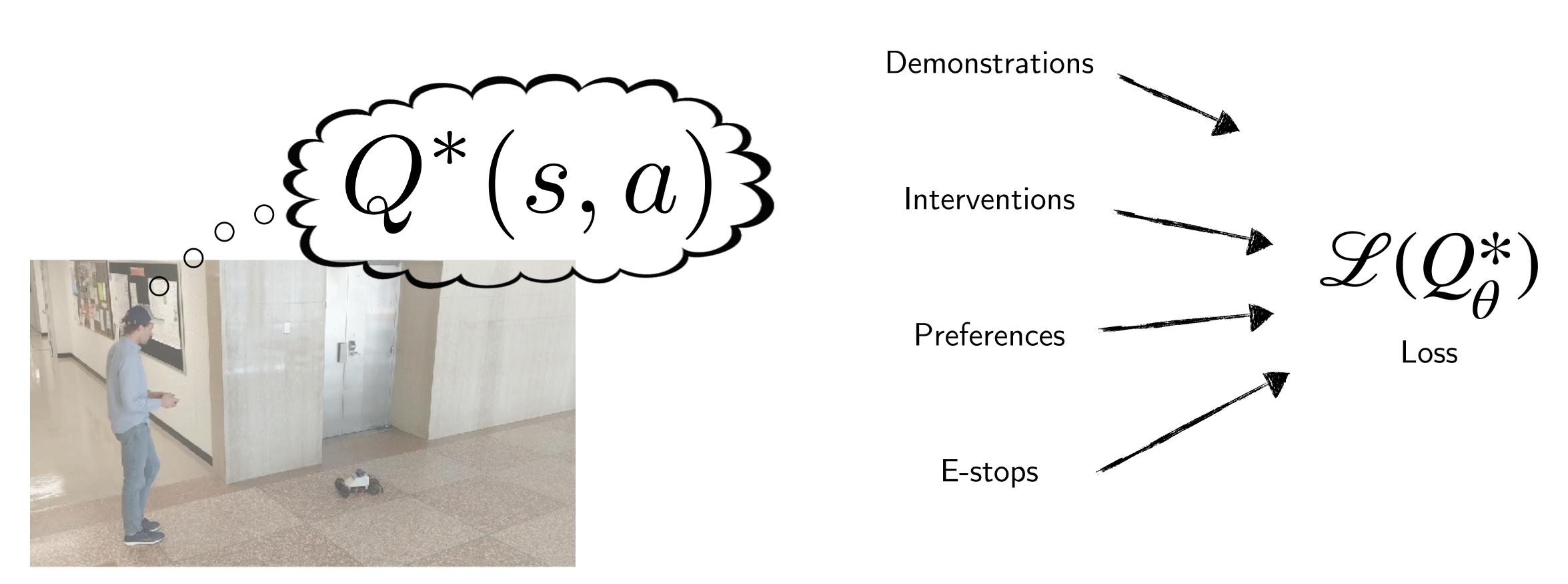
Inverse Optimal Control (Learn Cost)

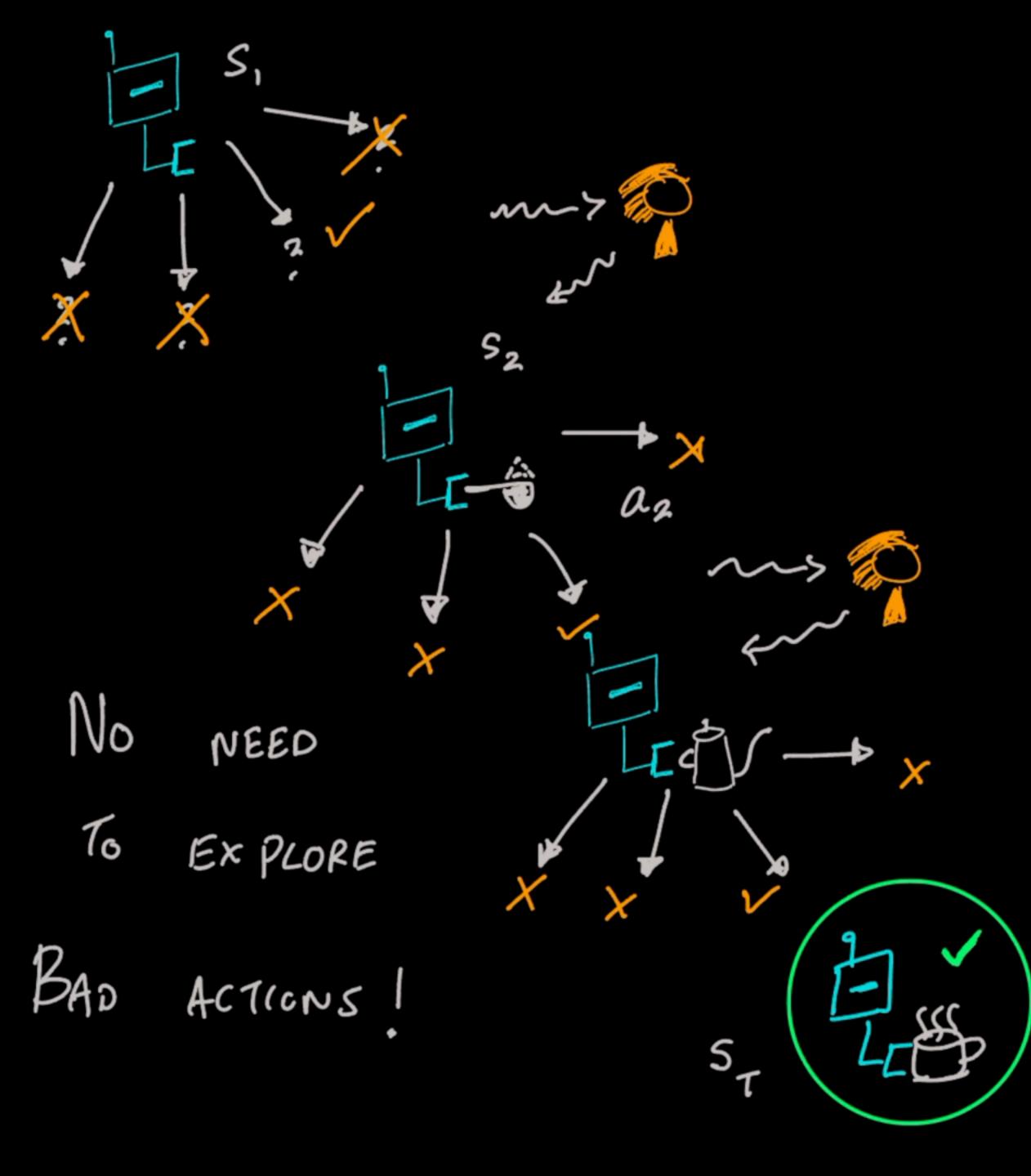


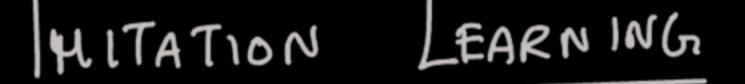
Make human look cheap, learner look expensive

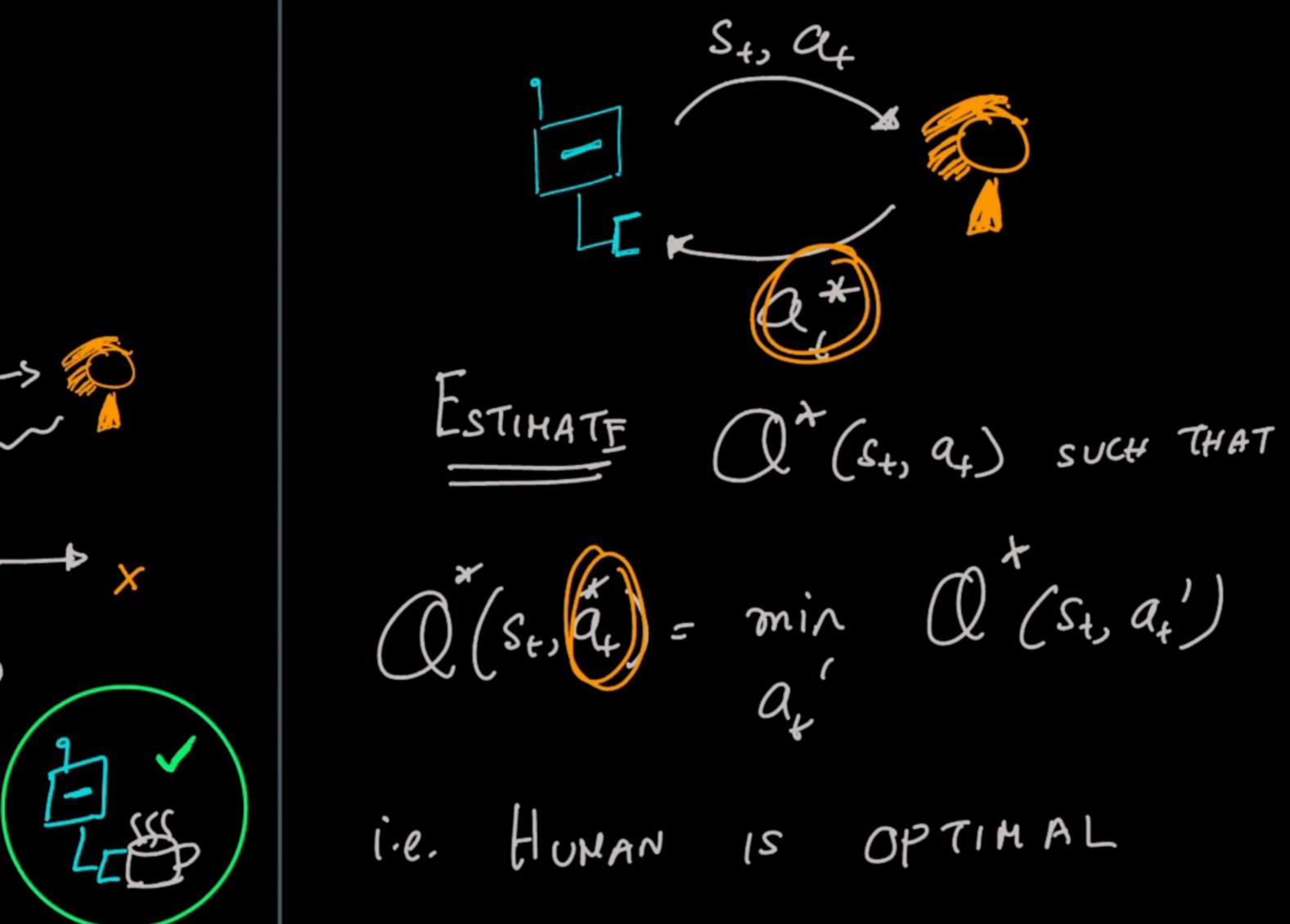
Learn Values

Estimate Q* from demonstrations, interventions, preferences, ... and even E-stops!



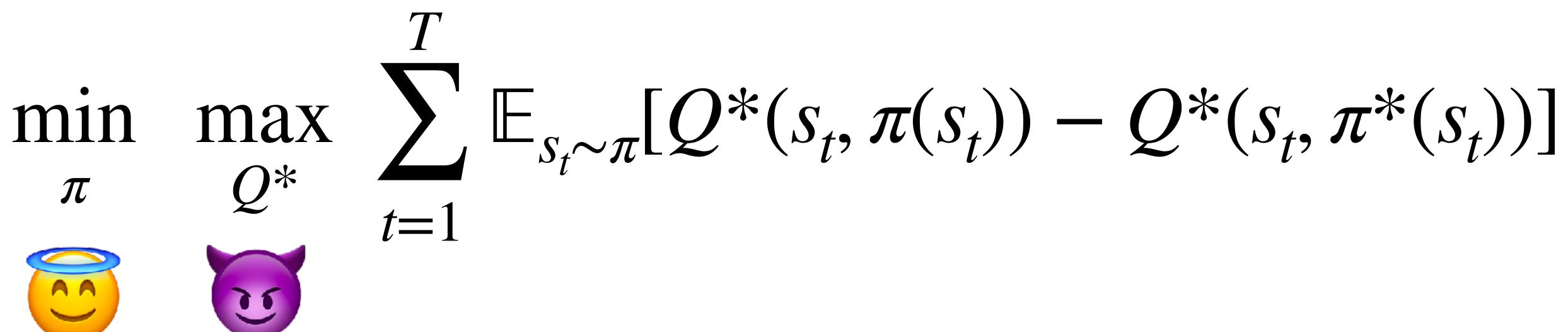




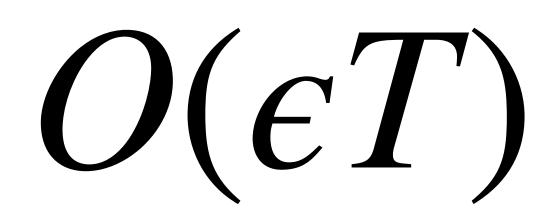


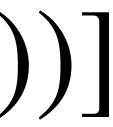
The Imitation Game

We have an interactive expert. Apply PDL in forward direction: roll-in learner, roll-out expert

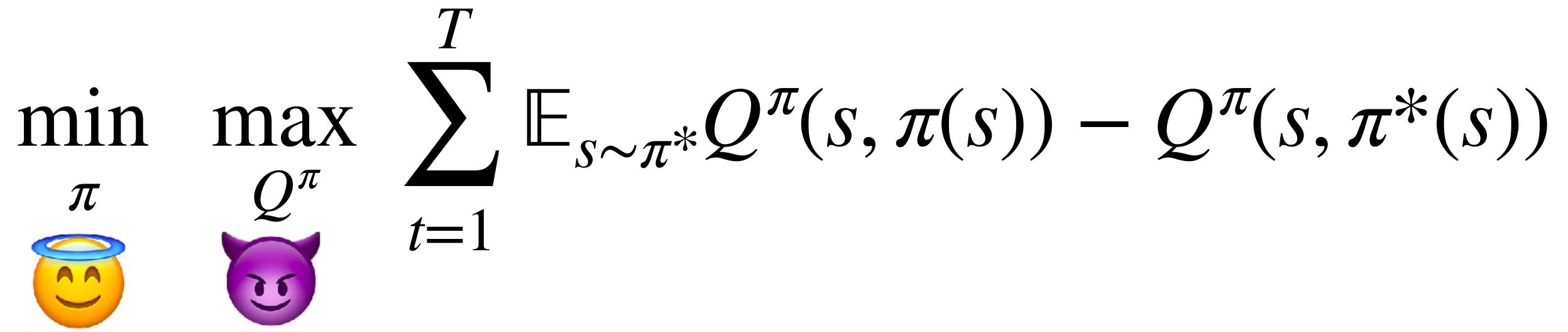


Use no-regret learning to solve the game!





The RL Game



Use no-regret learning to solve the game! $O(\epsilon T^2)_{35}$

We don't have interactive expert. Apply PDL in reverse direction: roll-in expert, roll-out learner

A grand unification of IL / RL Games?

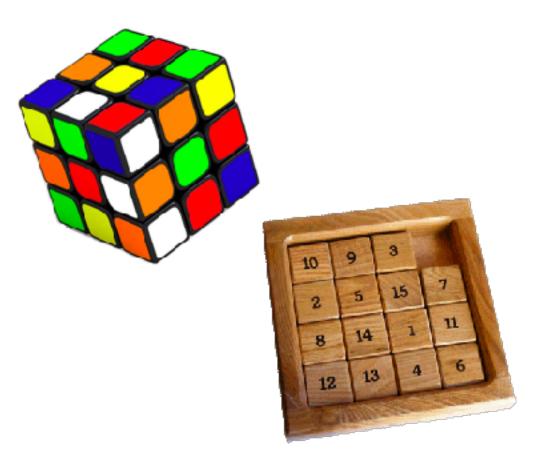
A simple question: Can learning help us build better planners?

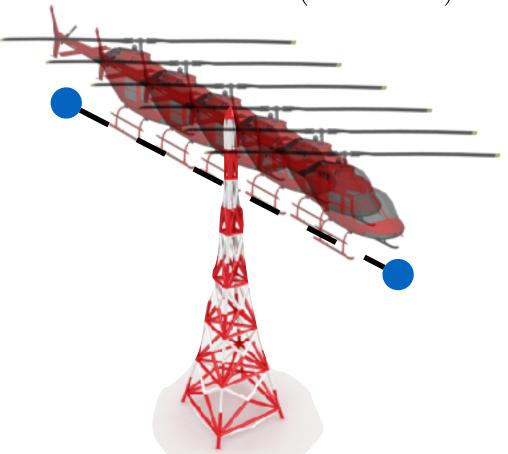


A prospective grad student: "Is planning just A*?"

Motion Planning: Dealing with expensive collision checking

Trivial

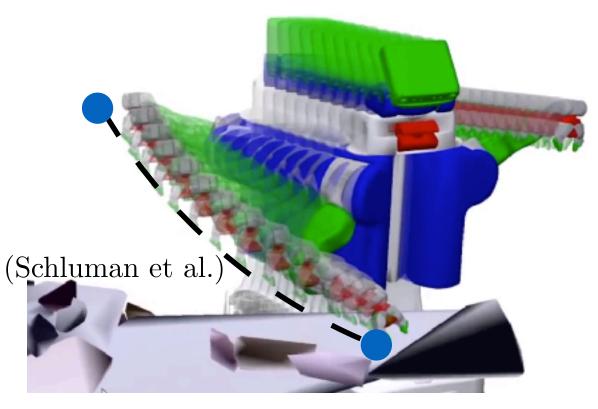




Medium

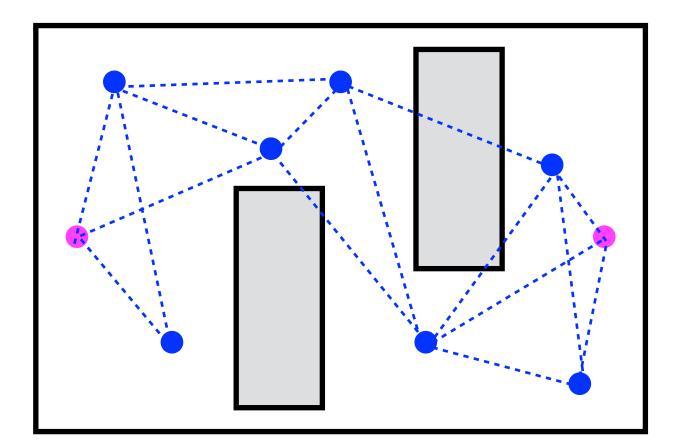
(Ross et al.)

Expensive

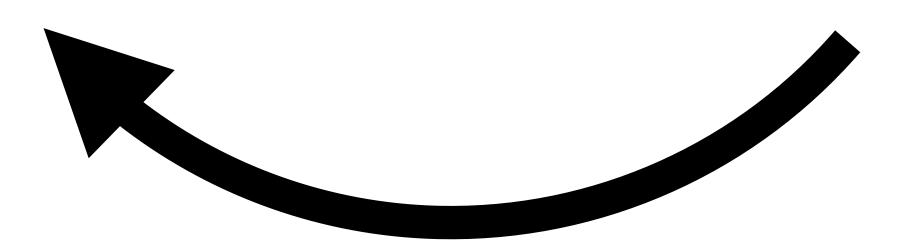


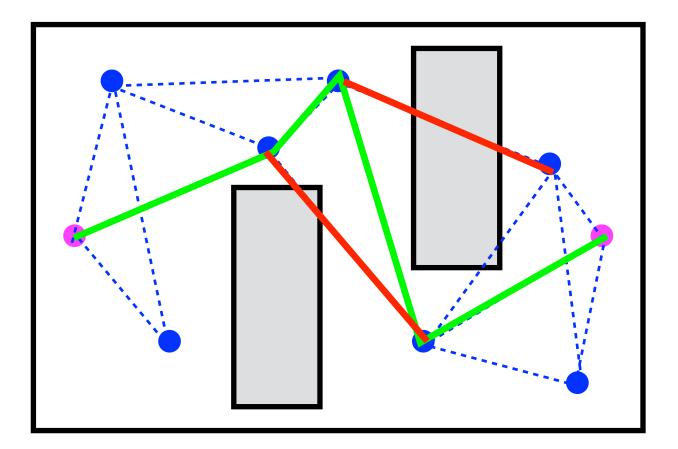
(LaValle'06, Bialkowski'11, Hauser'15,)

General framework for motion planning



Create a graph





Search the graph

General framework for motion planning

Any planning algorithm

Create graph Search graph Interleave

e.g. fancy random sampler

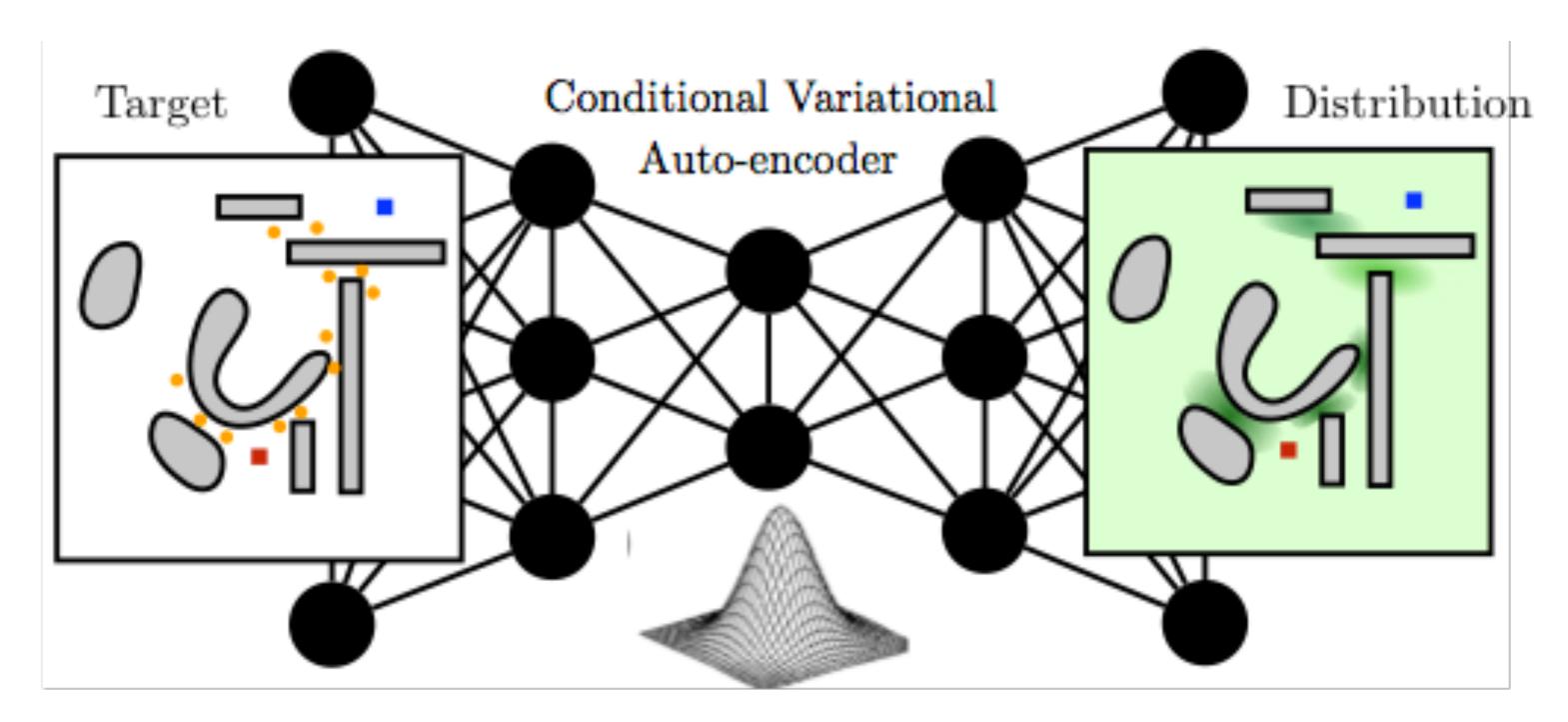
Learn sampler!

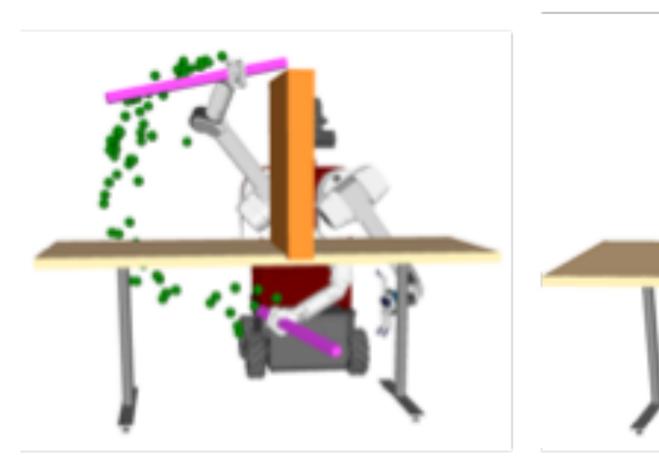
Learn r! heuristic!

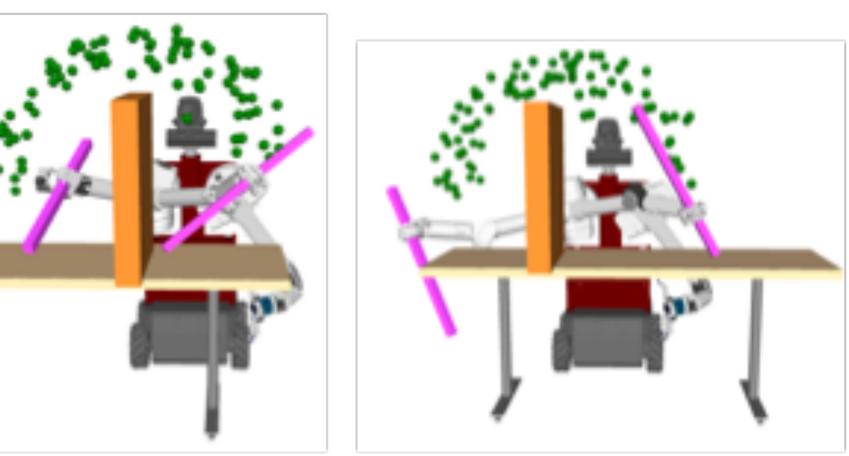
LEGO: Leveraging Experience in Roadmap Generation for Sampling-Based Planning

Rahul Kumar*1, Aditya Mandalika*2, Sanjiban Choudhury*2 and Siddhartha S. Srinivasa*2

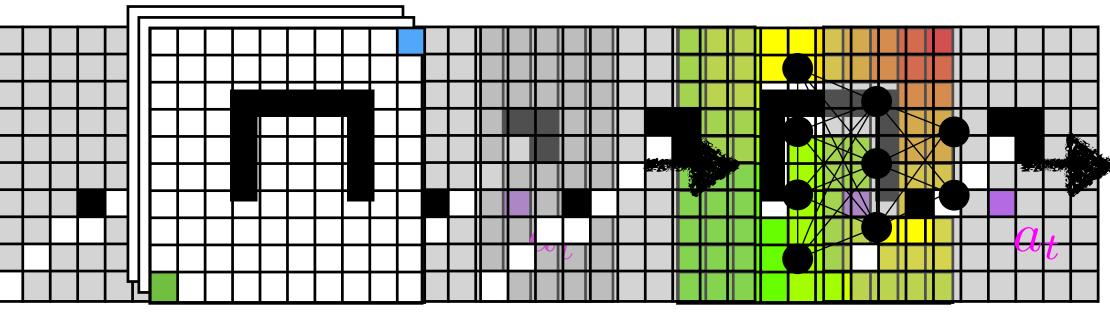
Learning a Sampler

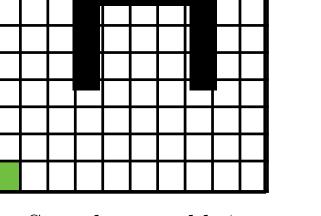






Learn a Heuristic

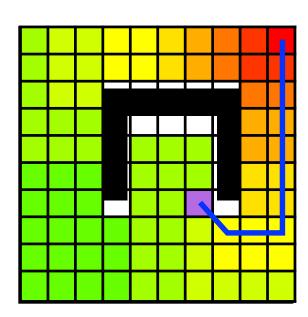




Sample a world ϕ from database $P(\phi)$

Roll-in with policymple a very detain a can be determined by the policy of the second contract of the second of t

		Ours	Baseline Learning			Baseline Handcrafted			
		SAIL	SL	CEM	QL	$h_{\mathbf{EUC}}$	$h_{\mathbf{MAN}}$	$\mathbf{A}^{\boldsymbol{*}}$	MHA*
alternating_gap		0.039	0.432	0.042	1.000	1.000	1.000	1.000	1.000
single_gap		0.158	0.214	0.057	1.000	0.184	0.192	1.000	0.286
shifting_gap		0.104	0.464	1.000	1.000	0.506	0.589	1.000	0.804
forest	<u>.</u>	0.036	0.043	0.048	0.121	0.041	0.043	1.000	0.075
bugtrap_forest]	0.147	0.384	0.182	1.000	0.410	0.337	1.000	0.467
gaps_forest		0.221	1.000	1.000	1.000	1.000	1.000	1.000	1.000
maze		0.103	0.238	0.479	0.399	0.185	0.171	1.000	0.279
multiple_bugtrap	רני חנח חרי	0.479	0.480	1.000	0.835	0.648	0.617	1.000	0.87643



 $\begin{array}{c} \begin{array}{c} \text{Rell out with oracle TeR} \\ \text{add } f \\ \text{COSC-TO-BO} \end{array}$

Open Challenges

