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Two Ingredients of RL
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Types of uncertainty

Aleatoric uncertainty Epistemic uncertainty

(Can't change this uncertainty) (Acquire knowledge!)



Epistemic Uncertainty

Uncertain about state Uncertain about transitions



Can be uncertain about any of these things!




What do we want to do about uncertainty?’

Pure Pure
Exploration Exploitation
Collapse Take information Be robust
uncertainty as gathering steps, but be against
quickly as possible robust along the way uncertainty
. . UAV flyi
20 questions Life! yIe

in wind






Categorize the following robot applications!
0 5 10

Pure Pure
Exploration Exploitation

Selt-driving through an intersection
Assistive manipulation via shared autonomy
UAV autonomously mapping a building
Grasping an object on the top-shelf
Off-road driving through terrain



Think-Pair-Share

Think (30 sec): Categorize the following robotics application
from O (pure exploration) to 10 (pure exploitation)

Pair: Find a partner Self-driving through an intersection

Assistive manipulation via shared autonomy

Share (45 sec): Partners exchange YAV autonomously mapping a building

ideas Grasping an object on the top-shelf

Off-road driving through terrain
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But what is the optimal
exploration-exploitation
algorithm??
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Beliet Space Planning

Can frame optimal exploration / exploitation as
Beliet Space Planning

@ Latent

variable

State: s &€ S Transition: P(s|s,a, o)
(fixed late)nt ¢ c P Prior: P(¢)

variable
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Bayes Optimality:

The Holy Grail







Beliet Space Planning is NP-Hard
at best, undecidable at worst

Need to relax our problem!




A Tale of Relaxations
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Optimism
in the Face of

Uncertainty

(OFU)
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The Lazy Shortest Path Problem

Let's say you have a graph
where you don't know the
cost of edges. (Can be 0 or 1)

Find the shortest path while
minimizing number of edges
queried
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An really simple algorithm

Optimistically initialize all cost(edge) = 0 O

Repeat till shortest feasible path found: o

Find the shortest path 5 g

Evaluate shortest path

Update costs
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An really simp

itialize all cost(edge) =

ﬂ

Optimisticall

Repeat till shor sy nd:

Find the

le algorithm
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Many questions ...

Why do we care about
minimizing edge queries’

What can we prove about
this algorithm?
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Principle of
Optimism in the Face of
Uncertainty (OFU)

One of two things will happen:

1. Either we are correct and done!
2. Or we were wrong and
eliminated a candidate option




Optimism in the Face of Uncertainty

Path 1

Path 2

Path 3

Path 4

Path N

Sort paths by ascending cost

30



Optimism in the Face of Uncertainty

r A

Path 2

Path 3

Path 4

Path N

Sort paths by ascending cost

Keep checking each path
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Optimism in the Face of Uncertainty

Sort paths by ascending cost

Keep checking each path

At most check K paths till
you find the shortest one

: : Optimal strategy given
Path N no other information
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A more general instance: R-MAX

® Let's say we are tasked with exploring an unknown MDP
e® Optimistically initialize the MDP

® Assume all unknown state actions transition to “heaven’ and get maximum reward indefinitely
R

max

® Repeat forever
@ Solve for the optimal policy given current model. Execute policy

@ If you visit a state K number of times, update model to use empirical transition and reward
function

e Can prove that you act optimally in all but a fixed set of N steps (PAC-MDP guarantee)
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What if each evaluation
IS stochastic?
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Doors

-1000
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Doors

Round 1

Round 2

Round 3

-1000
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Optimism in the Face of Uncertainty

p(Q)

m Which action should we pick?
m [he more uncertain we are about an action-value
m [he more important it is to explore that action

m |t could turn out to be the best action Crodit: David Silver 47



Optimism in the Face of Uncertainty

.............
....................

m After picking blue action
m We are less uncertain about the value
m And more likely to pick another action

m Until we home in on best action

Credit: David Silver 38



Upper Confidence Bound

m Estimate an upper confidence Ut(a) for each action value
= Such that Q(a) < Q:(a) + U:(a) with high probability
m This depends on the number of times N(a) has been selected

m Small N,(a) = large qt(a) (estimated value is uncertain)
m Large N;(a) = small U;(a) (estimated value is accurate)

m Select action maximising Upper Confidence Bound (UCB)

a; = argmax @t(a) + Ut(a)
acA

Credit: David Silver 39



Upper Confidence Bound

Theorem (Hoeffding's Inequality)

Let X, ..., Xt be i.i.d. random variables in [0,1], and let
X, =1 Zizl X, be the sample mean. Then

T

P|E[X] > X:+u| < e

m We will apply Hoeffding's Inequality to rewards of the bandit

m conditioned on selecting action a

3 -Q(a) > Q:(a) + Ut(a)- < e—2Ni(a)Ut(a)”

Credit: David Silver 40



Upper Confidence Bound

Pick a probability p that true value exceeds UCB

Now solve for U;(a)

—2N¢(a)Us(a)?

€ — P

— log p
Ut(a) — \/th(a)

Reduce p as we observe more rewards, e.g. p = t—*

Ensures we select optimal action as t — o©

Ut(a) = \/ill:)(ga)t

Credit: David Silver 41



Upper Confidence Bound

Value of action 2 Iog t
a; = argmax Q(a) +
t ac A ( ) Nt(a) How many times

did you try action?

Exploration Bonus

logt
0g _0)

Can prove that it is no-regret ( lim
t—-oc0 [

Credit: David Silver 42



How can we apply this to RL?

Add an exploration bonus to the reward function!

2logn

rr(s,a) = r(s,a) + NG.
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What if we have a really
good prior knowledge?
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Posterior
Sampling
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The Online Shortest Path Problem

You just moved to Cornell and are
traveling from office to home.

You would like to get home quickly
but you are uncertain about travel
times along each edge

Suppose we had a prior
on travel time for each edge

(Mean 6,, Var ¢,)
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Can we apply UCB?

You just moved to Cornell and are
traveling from office to home. S
You would like to get home quickly o
but you are uncertain about travel 5
times along each edge o
o
Suppose we had a prior o o
on travel time for each edge e
(Mean 6,, Var o,)
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UCB is a nightmare!

Hard to compute upper confidence
- ! ® ) ® bounds for arbitrary
LY — ‘

distributions

s

Have to “tune” exploration bonus,
too much and we will over explore
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What if ...

... we just sampled travel
times from our prior and
solved the shortest path?




A suspicious

Repeat forever:

ly S

ample edge times from posterior

ompute shortest path

Travel along path, and update
posterior

mp

le algorithm
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Posterior Sampling for Motion Planning

Sample Sample
/\‘ Graph /\" Graph
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Evaluate

Update

Evaluate

Update

Evaluate

Posterior Sampling for Anytime Motion Planning
on Graphs with Expensive-to-Evaluate Edges

Brian Hou, Sanjiban Choudhury, Gilwoo Lee, Aditya Mandalika, and Siddhartha S. Srinivasa
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Posterior Sampling for Motion Planning

Path Length

90
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Configurations Evaluated
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Posterior Sampling for Anytime Motion Planning
on Graphs with Expensive-to-Evaluate Edges

Brian Hou, Sanjiban Choudhury, Gilwoo Lee, Aditya Mandalika, and Siddhartha S. Srinivasa
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Posterior Sampling for Reinforcement Learning

Ok
-G

Shared network

O
= 1. sample Q-function ) from p(Q) 3

2. act according to () for one episode
3. update p(Q)

Deep Exploration via Bootstrapped DQN

T — Bootstrapped Q Network

iosband, cblundell, apritzel}@google.com, bvr@stanford.edu
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Posterior Sampling for Reinforcement Learning

> 1. sample Q-function ) from p(Q)

2. act according to @ for one episode i» .- &
- 3. update p(Q)

Why does work better than taking random actions?
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What if we wanted to
explore as optimally as
possible using prior
information?’
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20 Questions

Let's say you have a set of hypotheses
{60,,0,,...,0 }

and a set of tests

{(t;,ty, ..., 1}

Given a prior over hypotheses P(6)

Find the minimal number of tests to identify hypothesis
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20 Questions

Let's say you have a set o
{6,,6,, ..

f hfsotheses

$? ‘e\%

Given a prior over hypotheses P(6)

Find the minimal number of tests to identify hypothesis
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A simple algorithm

Greedily pick the test that
maximizes information gain

max H(0) — E_H(O|t, o)
[

Entropy  Posterior entropy

This is near-optimal!
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Optimal edge evaluation for shortest path
(CJS+ NeurTPS’17] [C'SS TJCAT'18]
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Optimism
in the Face of
Uncertainty

(OFU)

Belief Space Planning is NP-Hard
at best, undecidable at worst

Need to relax our problem!

Posterior
Sampling

Information

Gain

o1



