Dealing with Uncertainty: Part 1

Sanjiban Choudhury

Cornell Bowers CIS Computer Science

Two Ingredients of RL

Exploration Exploitation

Estimate Values $Q(s, a)$

4
(
$\sin +\frac{1}{2}$
 \section*{Uncertainty
 \section*{Uncertainty
 .

 . :}

$x^{2}+x^{2}+x^{4} x+x^{2}$

4

\qquad
\qquad
2

$x_{2}^{2}+\frac{1}{2}$ 4. 4 4 $8 \sqrt{10}$ t $\begin{array}{r}18 \\ -83 \\ \hline 2\end{array}$ 4

Types of uncertainty

Aleatoric uncertainty

(Can't change this uncertainty)

Epistemic uncertainty

(Acquire knowledge!)

Epistemic Uncertainty

Uncertain about state

Uncertain about transitions

Can be uncertain about any of these things!

What do we want to do about uncertainty?

Pure Exploration

Optimally explore

 / exploit
Pure
 Exploitation

Collapse
uncertainty as
quickly as possible

Take information
gathering steps, but be robust along the way

Be robust
against
uncertainty

UAV flying in wind

Activity!

Categorize the following robot applications!

Self-driving through an intersection
Assistive manipulation via shared autonomy
UAV autonomously mapping a building
Grasping an object on the top-shelf
Off-road driving through terrain

Think-Pair-Share

Think (30 sec): Categorize the following robotics application from 0 (pure exploration) to 10 (pure exploitation)

Pair: Find a partner
Self-driving through an intersection
Assistive manipulation via shared autonomy
Share (45 sec): Partners exchange ideas

UAV autonomously mapping a building
Grasping an object on the top-shelf
Off-road driving through terrain

But what is the optimal exploration-exploitation algorithm?

Belief Space Planning

Can frame optimal exploration / exploitation as Belief Space Planning

$$
\begin{array}{cc}
\text { State: } s \in \mathcal{S} & \text { Transition: } P\left(s^{\prime} \mid s, a, \phi\right) \\
\begin{array}{c}
\text { (fixed latent } \\
\text { variable) }
\end{array} & \phi \in \Phi
\end{array}
$$

Bayes Optimality:

The Holy Grail

Belief Space Planning is NP-Hard at best, undecidable at worst

Need to relax our problem!

A Tale of Relaxations

Optimism

in the Face of

Uncertainty

 (OFU)
The Lazy Shortest Path Problem

Let's say you have a graph where you don't know the cost of edges. (Can be 0 or 1)

Find the shortest path while minimizing number of edges queried

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Optimistically initialize all cost(edge) $=0$

Repeat till shortest feasible path found:

Find the shortest path

Evaluate shortest path

Update costs

An really simple algorithm

Many questions ...
Why do we care about minimizing edge queries?

What can we prove about this algorithm?

Principle of

Optimism in the Face of Uncertainty (OFU)

One of two things will happen:

1. Either we are correct and done!
2. Or we were wrong and eliminated a candidate option

Optimism in the Face of Uncertainty

Path 1

Sort paths by ascending cost
Path 2
Path 3

Path 4

Path N

Optimism in the Face of Uncertainty

Path 1

Sort paths by ascending cost

Path 2

Keep checking each path

Optimism in the Face of Uncertainty

Path 1
Path 2
Path 3

Path 4

 \vdotsPath N

Sort paths by ascending cost

Keep checking each path

At most check K paths till you find the shortest one

Optimal strategy given no other information

A more general instance: R-MAX

- Let's say we are tasked with exploring an unknown MDP
- Optimistically initialize the MDP
- Assume all unknown state actions transition to "heaven" and get maximum reward indefinitely $R_{\text {max }}$
- Repeat forever
- Solve for the optimal policy given current model. Execute policy
- If you visit a state K number of times, update model to use empirical transition and reward function
- Can prove that you act optimally in all but a fixed set of N steps (PAC-MDP guarantee)

What if each evaluation is stochastic?

Doors
Round 1 Round 2 Round 3

Optimism in the Face of Uncertainty

■ Which action should we pick?

- The more uncertain we are about an action-value
- The more important it is to explore that action
- It could turn out to be the best action

Optimism in the Face of Uncertainty

- After picking blue action
- We are less uncertain about the value
- And more likely to pick another action
- Until we home in on best action

Upper Confidence Bound

- Estimate an upper confidence $\hat{U}_{t}(a)$ for each action value
- Such that $Q(a) \leq \hat{Q}_{t}(a)+\hat{U}_{t}(a)$ with high probability
- This depends on the number of times $N(a)$ has been selected
- Small $N_{t}(a) \Rightarrow$ large $\hat{U}_{t}(a)$ (estimated value is uncertain)
- Large $N_{t}(a) \Rightarrow$ small $\hat{U}_{t}(a)$ (estimated value is accurate)
- Select action maximising Upper Confidence Bound (UCB)

$$
a_{t}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} \hat{Q}_{t}(a)+\hat{U}_{t}(a)
$$

Upper Confidence Bound

Theorem (Hoeffding's Inequality)

Let X_{1}, \ldots, X_{t} be i.i.d. random variables in [0,1], and let $\bar{X}_{t}=\frac{1}{\tau} \sum_{\tau=1}^{t} X_{\tau}$ be the sample mean. Then

$$
\mathbb{P}\left[\mathbb{E}[X]>\bar{X}_{t}+u\right] \leq e^{-2 t u^{2}}
$$

- We will apply Hoeffding's Inequality to rewards of the bandit
- conditioned on selecting action a

$$
\mathbb{P}\left[Q(a)>\hat{Q}_{t}(a)+U_{t}(a)\right] \leq e^{-2 N_{t}(a) U_{t}(a)^{2}}
$$

Upper Confidence Bound

- Pick a probability p that true value exceeds UCB
- Now solve for $U_{t}(a)$

$$
\begin{aligned}
e^{-2 N_{t}(a) U_{t}(a)^{2}} & =p \\
U_{t}(a) & =\sqrt{\frac{-\log p}{2 N_{t}(a)}}
\end{aligned}
$$

■ Reduce p as we observe more rewards, e.g. $p=t^{-4}$
■ Ensures we select optimal action as $t \rightarrow \infty$

$$
U_{t}(a)=\sqrt{\frac{2 \log t}{N_{t}(a)}}
$$

Upper Confidence Bound

Exploration Bonus

Can prove that it is no-regret $\left(\lim _{t \rightarrow \infty} \frac{\log t}{t}=0\right)$

How can we apply this to RL?

Add an exploration bonus to the reward function!

$$
r^{+}(s, a)=r(s, a)+\sqrt{\frac{2 \log n}{N(s, a)}}
$$

What if we have a really good prior knowledge?

Posterior Sampling

The Online Shortest Path Problem

You just moved to Cornell and are traveling from office to home.

You would like to get home quickly but you are uncertain about travel times along each edge

Suppose we had a prior on travel time for each edge (Mean $\left.\theta_{e}, \operatorname{Var} \sigma_{e}\right)$

Can we apply UCB?

You just moved to Cornell and are traveling from office to home.

You would like to get home quickly but you are uncertain about travel times along each edge

Suppose we had a prior on travel time for each edge (Mean θ_{e}, Var σ_{e})

UCB is a nightmare!

Hard to compute upper confidence bounds for arbitrary distributions

Have to "tune" exploration bonus, too much and we will over explore

What if ...

... we just sampled travel times from our prior and solved the shortest path?

A suspiciously simple algorithm

Repeat forever:

Sample edge times from posterior

Compute shortest path

Travel along path, and update posterior

Posterior Sampling for Motion Planning

Posterior Sampling for Anytime Motion Planning on Graphs with Expensive-to-Evaluate Edges

Posterior Sampling for Motion Planning

Posterior Sampling for Anytime Motion Planning on Graphs with Expensive-to-Evaluate Edges

Posterior Sampling for Reinforcement Learning

1. sample Q-function Q from $p(Q)$
2. act according to Q for one episode
3. update $p(Q)$

Deep Exploration via Bootstrapped DQN

Ian Osband ${ }^{1,2}$, Charles Blundell ${ }^{2}$, Alexander Pritzel 2, Benjamin Van Roy ${ }^{1}$
fiosband, cblundell, apritzel\}@google com, bvr@stanford.edu

Posterior Sampling for Reinforcement Learning

1. sample Q-function Q from $p(Q)$
2. act according to Q for one episode
3. update $p(Q)$

Why does work better than taking random actions?

What if we wanted to explore as optimally as possible using prior information?

20 Questions

Let's say you have a set of hypotheses

$$
\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}
$$

and a set of tests

$$
\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}
$$

Given a prior over hypotheses $P(\theta)$
Find the minimal number of tests to identify hypothesis

20 Questions

Let's say you have a set of hypotheses $\left\{\theta_{1}, \theta_{2}, \ldots \theta_{n}\right\}$
 an a el or tests
 $\tau=\{1, \ldots, N\}$

Given a prior over hypotheses $P(\theta)$
Find the minimal number of tests to identify hypothesis

A simple algorithm

Greedily pick the test that maximizes information gain

$\max H(\theta)-\mathbb{E}_{o} H(\theta \mid t, o)$ t

Entropy Posterior entropy

This is near-optimal!

Optimal edge evaluation for shortest path

[CJS+ NeurIPS'17] [CSS IJCAI'18]

tl;

Belief Space Planning is NP-Hard at best, undecidable at worst

Need to relax our problem!

