Planning with Inaccurate Models

Sanjiban Choudhury

Elephant in the room: Why can't we just learn a model?

"Just pretend I'm not here..."

Model Based Reinforcement Learning

Learn Model

Plan with Learned Model

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

Georgia Tech Auto Rally (Byron Boots lab)

Think-Pair-Share

for rally car? What loss function will you use? What planner?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

Think (30 sec): What architecture would you use to learn a model

Part 1: System Identification

Collect data of rally car $(x_1, u_1, x_2, u_2, ...)$ $\mathbf{x}_{t+1} = \mathbf{F}(\mathbf{x}_t, \mathbf{u}_t) = \begin{bmatrix} \mathbf{q}_t + \dot{\mathbf{q}}_t \Delta t \\ \dot{\mathbf{q}}_t + \mathbf{f}(\mathbf{x}_t, \mathbf{u}_t) \Delta t \end{bmatrix}$ 2 Lover MLP

Information Theoretic MPC for Model-Based Reinforcement Learning

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and Evangelos A. Theodorou

Learn Model

- 1.Sample and evaluate trajectories
- 2.Compute control update
- 3.Execute first control in sequence, receive state feedback
- 4.Repeat, using the un-executed portion of the previous control sequence to warm-start the trajectory

Part 2: Planning

Information Theoretic MPC for Model-Based Reinforcement Learning

Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews, James M. Rehg, Byron Boots, and Evangelos A. Theodorou

Plan with Learned Model

Cross Entropy like approach!

2560, 2.5 second trajectories sampled with cost-weighted average @ 60 Hz

Question: How do you collect data for learning model?

Another Example: Helicopter Aerobatics

A nose-in funnel!

(Super cool work by Pieter Abeel et al. <u>https://people.eecs.berkeley.edu/~pabbeel/autonomous_helicopter.html</u>)

Part 1: System Identification

Learn a linear model around reference

$$\Delta x_{t+1} = A_t x_t + B_t u_t$$

Part 2: Planning

Plan with Learned Model

Use LQR with learnt models

How does a tiny error in my model affect performance?

14

The Simulation Lemma

Training Distribution

Training Distribution

17

Super retro video of distribution mismatch!

18

Sure .. but what if we use really deep networks that drive down model learning loss really low?

Mismatch amplified by planning $\hat{\mathbf{V}}^{\pi}$ \mathbf{V}^{π}

Data gathering policy

Planner wants to go here

Intuition: Improve model where policy goes

Desired Trajectory

Exploration Distribution

Collect more data along current policy's trajectory

A simple algorithm: Dagger for System Identification

Collect Trajectories with

Extends our previous work [1]. Similar to [2,3]

Dagger works!

Planning is expensive ... Do we really have to run planning in an inner loop

No! Model need only help you correct

(a) Initial shot is off

(b) Aim at E_2 instead of E_1 (c) Aim at E_3 and hit the bull's eye

(a) Initial shot is off

(c) Aim at E_3 and hit the bull's eye (b) Aim at E_2 instead of E_1

Forward pass through real-world Back-propagate through model

The DREAMER Algorithm

DREAMER Overview

The three processes of the Dreamer agent. The world model is learned from past experience. From predictions of this model, the agent then learns a value network to predict future rewards and an actor network to select actions. The actor network is used to interact with the environment.

DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION

Danijar Hafner * University of Toronto Google Brain

Timothy Lillicrap DeepMind

Jimmy Ba University of Toronto

Mohammad Norouzi Google Brain

DREAMER: Learning World Model

01

,

ĺ

29

DREAMER: Learning World Model

Input Images

Future Outcomes

Dreamer: Learning Actor Critic from model

0

DREAMER: Results

Sparse Cartpole Acrobot Swingup

Hopper Hop

Walker Run

Quadruped Run

What makes a model good?

Model Free

Directly learn π or Q(s, a)

Model-Based OR Model Free?

Model Based

Learn a model P(s' | s, a), plan with model to find π

(From Lec 1.) Lesson #2

Models are useful fictions

 A_t

What makes a model good?

 $J_{M^*}(\hat{\pi}) - J_{M^*}(\pi^*)$

The Double Simulation Lemma

Model Learning: It's only a game!

If models are just a means to an end (performance difference) .. can we get the best of model-based and model-free?

Model-Based OR AND Model Free

Model Based

plan

Model Free

Blending MPC and Value Function

BLENDING MPC & VALUE FUNCTION APPROXIMATION FOR EFFICIENT REINFORCEMENT LEARNING

> Mohak Bhardwaj¹ Sanjiban Choudhury²

Byron Boots¹

¹ University of Washington ² Aurora Innovation Inc.

Step 1: Construct local Q-function estimate

$$\gamma^{i} \hat{c}(s_{i},a_{i}) + \gamma^{H} \hat{Q}(s_{H},a_{H}) | s_{0} = s, a_{0} = a$$

terminal Q-estimate

Step 2: Optimize policy parameters

$$= \underset{\phi}{\operatorname{argmin}} Q_H^{\phi}(s_t, \pi_{\phi}(s_t))$$

Step 3: Sample action to execute

 $a_t \sim \pi_{\phi_\star^*}(s_t)$

MPC as Q-function Approximation

41

Blending MPC and Value Function

At every step along horizon (recursive)

BLENDING MPC & VALUE FUNCTION APPROXIMATION FOR EFFICIENT REINFORCEMENT LEARNING

> Mohak Bhardwaj¹ **Byron Boots**¹ Sanjiban Choudhury²

> > ¹ University of Washington ² Aurora Innovation Inc.

future blended estimate

Similar to forward-view $TD(\lambda)$ but trades-off model and value function bias

Refer paper for connection to cost-shaping and Generalized Advantage Estimation [4]

Add model free value estimate at every timestep

