Temporal Difference Learning

Sanjiban Choudhury
Two Ingredients of RL

Exploration Exploitation

Estimate Values $Q(s, a)$
When the MDP is known!

Run Value / Policy Iteration
When MDP is known: Policy Iteration

\[V^\pi(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s' \sim \mathcal{F}(s, a)} V^\pi(s')] \]

Estimate value

\[\pi^+(s) = \arg \min_a c(s, a) + \gamma \mathbb{E}_{s' \sim \mathcal{F}(s, a)} V^\pi(s')] \]

Improve policy
What happens when the MDP is *unknown*?
Need to estimate the value of policy

Value $V^\pi(s)$

Policy π
Estimate the value of policy from sample rollouts

Roll outs

Policy π
Estimate the value of policy from sample rollouts

Roll outs

Value $V^\pi(s)$
Activity!
Think (30 sec): Given a bunch of roll-outs, how can you estimate value of a state? (Hint: More than one way!)

Pair: Find a partner

Share (45 sec): Partners exchange ideas
Option 1: Just execute the damn policy!

and look at the returns ..
Monte Carlo Evaluation

Goal: Learn $V^\pi(s)$ from complete rollout $s_1, a_1, c_1, s_2, a_2, c_2, \ldots \sim \pi$

Define: Return is the total discounted cost

$$G_t = c_{t+1} + \gamma c_{t+2} + \gamma^2 c_{t+3} + \ldots$$

Value function is the expected return

$$V^\pi(s) = \mathbb{E}_\pi[G_t \mid s_t = s]$$
First Visit Monte Carlo

For episode in rollouts:

If state s is visited for first time t

Increment counter $N(s) \leftarrow N(s) + 1$

Increment total return

$S(s) \leftarrow S(s) + G_t$

Update $V(s) = S(s)/N(s)$

Law of large numbers: $V(s) \to V^\pi(s)$ as $N(s) \to \infty$
For episode in rollouts:

If state s is visited for \textit{first} time t

Increment counter $N(s) \leftarrow N(s) + 1$

Increment total return $S(s) \leftarrow S(s) + G_t$

Update $V(s) = S(s)/N(s)$

Law of large numbers: $V(s) \to V^\pi(s)$ as $N(s) \to \infty$
First Visit Monte Carlo

For episode in rollouts:

If state s is visited for first time t

1. Increment counter $N(s) \leftarrow N(s) + 1$
2. Increment total return $S(s) \leftarrow S(s) + G_t$
3. Update $V(s) = S(s)/N(s)$

Law of large numbers: $V(s) \to V^\pi(s)$ as $N(s) \to \infty$
Can we incrementally update the value $V(s)$?
Exponential Moving Average!

For episode in rollouts:

If state s is visited for *first* time t

Update $V(s) \leftarrow V(s) + \alpha(G_t - V(s))$
Facts about Monte Carlo

- MC methods learn directly from episodes of experience
- MC is *model-free*: no knowledge of MDP transitions / rewards
- MC learns from *complete* episodes: no bootstrapping
- MC uses the simplest possible idea: value = mean return
- Caveat: can only apply MC to *episodic* MDPs
 - All episodes must terminate

From David Silver
Can we do better than Monte Carlo?

What if we want quick updates? (No patience to wait till end)

What if we don’t have complete episodes?
Option 2: Trust your value estimate
Value of a state

\[V^\pi(S_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} + \ldots \]

Expected discounted sum of cost from starting at a state and following a policy from then on

\[\pi^* = \arg \min_\pi \mathbb{E}_{s_0} V^\pi(s_0) \]
Value of a state-action

\[Q^\pi(s_t, a_t) = c_t + \gamma c_{t+1} + \gamma^2 c_{t+2} + \cdots \]

Expected discounted sum of cost from starting at a state, executing action and following a policy from then on

\[Q^\pi(s_t, a_t) = c(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim \mathcal{T}(s_t, a_t)} V^\pi(s_{t+1}) \]
Temporal Difference (TD) learning

Goal: Learn $V^\pi(s)$ from traces

$$(s_t, a_t, c_t, s_{t+1})$$ $$(s_t, a_t, c_t, s_{t+1})$$ $$(s_t, a_t, c_t, s_{t+1})$$ $$(s_t, a_t, c_t, s_{t+1})$$

Recall value function $V^\pi(s)$ satisfies

$$V^\pi(s) = c(s, \pi(s)) + \gamma \mathbb{E}_{s'} V^\pi(s')$$

TD Idea: Update value using estimate of next state value

$$V(s_t) \leftarrow V(s_t) + \alpha \left(c_t + \gamma V(s_{t+1}) - V(s_t) \right)$$

Temporal Difference Error
TD Learning

For every \((s_t, a_t, c_t, s_{t+1})\)

\[V(s_t) \leftarrow V(s_t) + \alpha (c_t + \gamma V(s_{t+1}) - V(s_t)) \]
Monte-Carlo

\[V(s) \leftarrow V(s) + \alpha(G_t - V(s)) \]

Zero Bias

High Variance

Always convergence

(Just have to wait till heat death of the universe)

Temporal Difference

\[V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s)) \]

Can have bias

Low Variance

May \textit{not} converge if using function approximation
If you are interested in helping me make pretty grid world animations of MC, TD, Q-learning …

Please reach out!
So far we have been talking about estimation of $V^\pi(s)$.

What happens when we improve policy?
Use the same policy iteration idea?

Estimate value $Q^\pi(s, a)$ using TD

Greedily improve policy

$\pi^+ = \arg \min_a Q^\pi(s, a)$

Will this work?
Is greedy policy improvement the right thing to do?

- There are two doors in front of you.
- You open the left door and get reward 0
 \[V(\text{left}) = 0 \]
- You open the right door and get reward +1
 \[V(\text{right}) = +1 \]
- You open the right door and get reward +3
 \[V(\text{right}) = +2 \]
- You open the right door and get reward +2
 \[V(\text{right}) = +2 \]
- :
- Are you sure you’ve chosen the best door?
SARSA

Estimate value $Q^\pi(s, a)$ using TD

Use epsilon-greedy to update policy

Need to explore!!
Can we learn off-policy?
Q-learning: Learning off-policy

For every \((s_t, a_t, c_t, s_{t+1})\)

\[
Q^*(s_t, a_t) = Q^*(s_t, a_t) + \alpha(c(s_t, a_t) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_t))
\]

Notice we are not approximating \(Q^\pi(s_t, a_t)\)

We don’t even care about \(\pi\)

We can learn from any data!
Is this ... magic?

We just learned in IL how distribution shift is a big deal ...

It’s not magic. Q-learning relies on a set of assumptions:

1. Each state-action is visited infinite times
2. Learning rate α must be annealed over time
How can we use a \((s,a,c,s')\) more than once?

What happens if samples are highly correlated?
Solution: Use a replay buffer!
Human-level control through deep reinforcement learning

Volodymyr Mnih1*, Koray Kavukcuoglu1*, David Silver1*, Andrei A. Rusu1, Joel Veness1, Marc G. Bellemare1, Alex Graves1, Martin Riedmiller1, Andreas K. Fidjeland1, Georg Ostrovski1, Stig Petersen1, Charles Beattie1, Amir Sadik1, Ioannis Antonoglou1, Helen King1, Dharshan Kumaran1, Daan Wierstra1, Shane Legg1 & Demis Hassabis1
Figure 1 | Schematic illustration of the convolutional neural network. The details of the architecture are explained in the Methods. The input to the neural network consists of an $84 \times 84 \times 4$ image produced by the preprocessing map ϕ, followed by three convolutional layers (note: snaking blue line symbolizes sliding of each filter across input image) and two fully connected layers with a single output for each valid action. Each hidden layer is followed by a rectifier nonlinearity (that is, max(0,x)).
Large-scale Q-learning with continuous actions (QT-Opt)

stored data from all past experiments \(\{(s_i, a_i, s'_i)\}_i \)

live data collection

training buffers

- off-policy \((s, a, s', r)\)
- on-policy \((s, a, s', r)\)
- labeled \((s, a, Q_T(s, a))\)

Bellman updaters

compute \(Q_T(s, a) = r + \max_{a'} Q_\theta(s', a')\)

training threads

\[\min_{\theta} ||Q_\theta(s, a) - Q_T(s, a)||^2 \]
The system is trained on about 1000 visually and physically diverse objects.
Making Q-learning better!

Problem: Q-learning suffers from an estimation bias \(\min_{a'} Q^*(s_{t+1}, a') \)
Solution: Double Q-learning \(Q^*(s_{t+1}, \arg \min_{a'} \tilde{Q}(s_{t+1}, a')) \)

Problem: Q-learning samples uniformly from replay buffer
Solution: Prioritized DQN - samples states with higher bellman error

Problem: Q-learning doesn’t seem to learn
Solution: Start with high exploration + learning rate, anneal!
A Unified View of Reinforcement Learning
Monte-Carlo

\[V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t)) \]
Temporal Difference Learning

\[V(S_t) \leftarrow V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) - V(S_t)) \]
Dynamic Programming

\[V(S_t) \leftarrow \mathbb{E}_\pi [R_{t+1} + \gamma V(S_{t+1})] \]
The Unified View
Estimate the value of policy from sample rollouts

Monte-Carlo

\[V(s) \leftarrow V(s) + \alpha(G_t - V(s)) \]

- Zero Bias
- High Variance
- Always convergence (Just have to wait till heat death of the universe)

Temporal Difference

\[V(s) \leftarrow V(s) + \alpha(c + \gamma V(s') - V(s)) \]

- Can have bias
- Low Variance
- May not converge if using function approximation

Q-learning: Learning off-policy

For every \((s_t, a_t, c_t, s_{t+1}) \)

\[Q^*(s_t, a_i) = Q^*(s_t, a_t) + \alpha(c(s_t, a_i) + \gamma \min_{a'} Q^*(s_{t+1}, a') - Q^*(s_t, a_i)) \]

Notice we are not approximating \(Q^*(s_t, a_i) \)
We don’t even care about \(\pi \)
We can learn from any data!