Distribution Matching, Maximum Entropy, GANs, and all that

Sanjiban Choudhury

Imitation Learning is NOT blindly copying the expert's actions

(Unknown) expert distribution

All we see are expert samples

The Distribution Matching Problem

Learn distribution over trajectories

Learner can also generate samples

 $P_{\theta}(\xi)$

What loss should we use?

KL Divergence: A common measure!

Given two distributions P(x) and Q(x)

 $D_{KL}(P \mid \mid Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$ $\boldsymbol{\chi}$

(Unknown) expert distribution

Can we $\min_{\theta} D_{KL}(P_{expert} | | P_{\theta})$ if we don't know P_{expert} ?

KL Divergence: A common measure!

Learn distribution over trajectories

 $P_{\theta}(\xi)$

 $D_{KL}(P_{expert} | | P_{\theta}) = \sum_{\xi} P_{expert}(\xi) \log \frac{P_{expert}(\xi)}{P_{\theta}(\xi)}$

(Unknown) expert distribution

KL Divergence: A common measure! $P_{\theta}(\xi)$ Learn distribution over trajectories Yes! $\min_{\theta} D_{KL}(P_{expert} | | P_{\theta}) = \sum_{\xi} P_{expert}(\xi) \log \frac{P_{expert}(\xi)}{P_{\theta}(\xi)}$ $\min_{\theta} - \sum_{\xi} P_{expert}(\xi) \log P_{\theta}(\xi)$ $\min_{O} - \mathbb{E}_{\xi \sim P_{expert}(\xi)} \log P_{\theta}(\xi)$

Only need samples from expert!

Flying through a forest

Expert flies left and right of the tree Given samples from expert

Flying through a forest

Expert flies left and right of the tree Given samples from expert

Let's say we want to learn $P_{\theta}(\xi)$, a gaussian over traj

 $\min_{\theta} D_{KL}(P_{expert} | | P_{\theta})$

What will we learn?

Think-Pair-Share

Think (30 sec): What Gaussian will we learn by minimizing KL divergence $\min_{\theta} - \mathbb{E}_{\xi \sim P_{expert}(\xi)} \log P_{\theta}(\xi)$?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

11

Forward KL is Mode-Covering!

Makes sure probability is non-zero for every action the expert takes

Maximizes recall

But sacrifices precision, i.e. can leave expert support

12

Well what about Reverse KL?

 $\min_{\theta} D_{KL}(P_{\theta} | | P_{expert})$

 $\min_{\theta} - \sum_{\xi} P_{\theta}(\xi) \log P_{expert}(\xi) - H(P_{\theta}(.))$ Entropy know this?

Estimating Divergences

KL is part of a *spectrum* of divergences

f-divergence: A family of divergences

 $D_f(P \mid \mid Q) = \sum_{x} Q(x) f\left(\frac{P(x)}{Q(x)}\right)$

Where f() is a convex function

Ali and Silvey, 1966

KL is part of a spectrum of divergences

Name	$D_f(P\ Q)$
Kullback-Leibler	$\int p(x) \log \frac{p(x)}{q(x)} dx$
Reverse KL	$\int q(x) \log \frac{\hat{q}(x)}{p(x)} dx$
Pearson χ^2	$\int \frac{(q(x) - p(x))^2}{p(x)} dx$
Squared Hellinger	$\int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 \mathrm{d}x$
Jensen-Shannon	$\frac{1}{2}\int p(x)\log \frac{2p(x)}{p(x)+q(x)} + q(x)$
GAN	$\int p(x) \log \frac{2p(x)}{p(x) + q(x)} + q(x)$

Generator f(u) $u \log u$ $-\log u$ $(u-1)^2$ $\left(\sqrt{u}-1\right)^2$ $(x)\log \frac{2q(x)}{p(x)+q(x)}\,\mathrm{d}x$ $-(u+1)\log \frac{1+u}{2} + u\log u$ $\log \frac{2q(x)}{p(x)+q(x)} dx - \log(4) \quad u \log u - (u+1) \log(u+1)$

Nowozin et al. 2017

Okay fine ... but how do we estimate these divergences when all we have are expert samples?

17

Minimize discriminator loss!

Use GANs to estimate divergence!

Imitation Learning as f-Divergence Minimization

Liyiming Ke¹, Sanjiban Choudhury¹, Matt Barnes¹, Wen Sun², Gilwoo Lee¹, and Siddhartha Srinivasa¹

¹ Paul G. Allen School of Computer Science & Engineering, University of Washington. Seattle WA 98105, USA,

{kayke,sanjibac,mbarnes,gilwoo,siddh}@cs.washington.edu,
² The Robotics Institute, Carnegie Mellon University, Pittsburgh PA 15213, USA, wensun@andrew.cmu.edu

ιU

The Rise of Adversarial Imitation Learning

JS-Divergence

Generative Adversarial Imitation Learning

Jonathan Ho Stanford University hoj@cs.stanford.edu

Stefano Ermon Stanford University ermon@cs.stanford.edu

Jeffrey Divergence

R2P2: A ReparameteRized Pushforward Policy for Diverse, Precise Generative Path Forecasting

Nicholas Rhinehart^{1,2[0000-0003-4242-1236]}, Kris M. Kitani¹[0000-0002-9389-4060], and Paul Vernaza²[0000-0002-2745-1894]

> ¹ Carnegie Mellon University, Pittsburgh PA 15213, USA ² NEC Labs America, Cupertino, CA 95014, USA

Reverse-KL Divergence

LEARNING ROBUST REWARDS WITH ADVERSARIAL **INVERSE REINFORCEMENT LEARNING**

Justin Fu, Katie Luo, Sergey Levine Department of Electrical Engineering and Computer Science University of California, Berkeley Berkeley, CA 94720, USA justinjfu@eecs.berkeley.edu,katieluo@berkeley.edu, svlevine@eecs.berkeley.edu

State-Marginal f-divergence

f-IRL: Inverse Reinforcement Learning via State Marginal Matching

Tianwei Ni^{*}, Harshit Sikchi^{*}, Yufei Wang^{*}, Tejus Gupta^{*}, Lisa Lee[†], Benjamin Eysenbach[†] Carnegie Mellon University {tianwein, hsikchi, yufeiw2, tejusg, lslee, beysenba}@cs.cmu.edu

Which divergence do we care about?

What divergence do we care about?

f-divergence are great and all, but which one do we actually care about?

What divergence do we care about?

 $J(\pi)$

What we actually care about is matching Performance Difference

$$= J(\pi^*)$$

 $\mathbb{E}_{\xi \sim P_{\theta}(\xi)} c(\xi) = \mathbb{E}_{\xi \sim P_{expert}(\xi)} c(\xi)$

But we don't know the costs c(.)

What divergence do we care about?

 $J(\pi)$

 $\mathbb{E}_{\xi \sim P_{\theta}(\xi)} C(\xi)$

What we actually care about is matching Performance Difference

$$= J(\pi^*)$$

$$= \mathbb{E}_{\xi \sim P_{expert}(\xi)} c(\xi)$$

- But we don't know the costs c(.)
- Costs are just weighted combination of features. What if we just matched all the expected features?

(Unknown) expert distribution

All we see are expert samples

Proposal: Match cost features!

Learn distribution over trajectories

Learner can also generate samples

 $P_{\theta}(\xi)$

Let's formalize!

Maximum Entropy Inverse Reinforcement Learning

Brian D. Ziebart, Andrew Maas, J.Andrew Bagnell, and Anind K. Dey

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 bziebart@cs.cmu.edu, amaas@andrew.cmu.edu, dbagnell@ri.cmu.edu, anind@cs.cmu.edu

Maximum Entropy Inverse Optimal Control

LEO: Learning Energy-based Models in Factor Graph Optimization

Paloma Sodhi^{1,2}, Eric Dexheimer¹, Mustafa Mukadam², Stuart Anderson², Michael Kaess¹ ¹Carnegie Mellon University, ² Facebook AI Research

Maximum Entropy Inverse Optimal Control

Human demonstration

Learner traj

Given dataset: $\{\xi_i^h, \phi_i\}_{i=1}^N$

(Human demo) (Map)

 $\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} -\log P_{\theta}(\xi_i^h | \phi_i) \qquad P_{\theta}(\xi | \phi) = \frac{1}{Z(\theta, \phi)} \exp(-C_{\theta}(\xi, \phi))$

Max lik. of human traj

Maximum Entropy Inverse Optimal Control

Solve for cost $C_{A}(\xi)$

More costly traj, less likely

for i = 1, ..., N $\frac{\xi_i}{7} \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Maximum Entropy Inverse Optimal Control

Loop over datapoints

Call planner!

for i = 1, ..., N# Loop over datapoints $\frac{\xi_i}{7} \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Maximum Entropy Inverse Optimal Control

Call planner!

for i = 1, ..., N# Loop over datapoints $\xi_i \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Call planner!

for i = 1, ..., N $\xi_i \sim \frac{1}{7} \exp\left(-C_{\theta}(\xi, \phi_i)\right)$ $\theta^{+} = \theta - \eta \left[\nabla_{\theta} C_{\theta}(\xi_{i}^{h}, \phi_{i}) - \nabla_{\theta} C_{\theta}(\xi_{i}, \phi_{i}) \right] \text{ \# Update cost}$

(Push down human cost)

Maximum Entropy Inverse Optimal Control

Loop over datapoints

Call planner!

Deep Max Ent

Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments

Markus Wulfmeier¹, Dominic Zeng Wang¹ and Ingmar Posner¹

autonomous execution 1x real-time

Expert is realizable $\pi^E \in \Pi$

Setting

As $N \rightarrow \infty$, drive down $\epsilon = 0$ (or Bayes error)

Even as $N \to \infty$, behavior cloning $O(\epsilon CT)$

Solutio

Nothing special. Collect lots of data and do Behavior Cloning

Requires interactive simulator (MaxEntIRL) to match distribution $\Rightarrow O(\epsilon T)$

where *C* is conc. coeff

Non-realizable expert + limited expert support

Even as $N \to \infty$, behavior cloning $O(\epsilon T^2)$

Requires interactive expert (DAGGER / EIL) to provide labels $\Rightarrow O(\epsilon T)$

tl;dr

for i = 1, ..., N $\begin{aligned} \xi_i^* &= \min_{\xi} [C_{\theta}(\xi, \phi_i) - \gamma(\xi, \xi^h)] & \# \text{ Call planner!} \\ \theta^+ &= \theta - \eta [\nabla_{\theta} C_{\theta}(\xi_i^h, \phi_i) - \nabla_{\theta} C_{\theta}(\xi_i^*, \phi_i) + \nabla_{\theta} R(\theta)] \end{aligned}$ (Push down human cost)

When the expert is Suboptimal Noisy **Privileged Information**

LEARCH does NOT converge!!

Learning to Search (LEARCH)

Loop over datapoints

(Push up planner cost) # Update cost

Maximum Entropy Inverse Optimal Control

