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(Unknown) expert distribution

The Distribution Matching Problem
Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

All we see are 

expert samples

Learner can also

generate samples

?

What loss 
should we 

use?



KL Divergence: A common measure!

4

Given two distributions P(x) and Q(x)

DKL(P | |Q) = ∑
x

P(x)log
P(x)
Q(x)



KL Divergence: A common measure!
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DKL(Pexpert | |Pθ) = ∑
ξ

Pexpert(ξ)log
Pexpert(ξ)

Pθ(ξ)

(Unknown) expert distribution

Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

min
θ

DKL(Pexpert | |Pθ)Can we if we don’t know   Pexpert?



KL Divergence: A common measure!
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min
θ

DKL(Pexpert | |Pθ) = ∑
ξ

Pexpert(ξ)log
Pexpert(ξ)

Pθ(ξ)

(Unknown) expert distribution

Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

Yes!

min
θ

− ∑
ξ

Pexpert(ξ)log Pθ(ξ)

min
θ

− 𝔼ξ∼Pexpert(ξ) log Pθ(ξ)Only need samples 
from expert! 
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https://www.youtube.com/watch?v=mTfVXo8Yc3E


Flying through a forest
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Expert flies left 

and right of the tree

Given samples from expert



Flying through a forest
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Expert flies left 

and right of the tree

Given samples from expert

Let’s say we want to learn 
, a gaussian over trajPθ(ξ)

min
θ

DKL(Pexpert | |Pθ)

What will we learn?



Activity!



Think-Pair-Share 
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Think (30 sec): What Gaussian will we learn by minimizing KL 
divergence  ?min

θ
− 𝔼ξ∼Pexpert(ξ) log Pθ(ξ)

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 



Forward KL is Mode-Covering!
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Makes sure probability is 
non-zero for every action 

the expert takes

Maximizes recall

But sacrifices precision, i.e. 
can leave expert support



Well what about Reverse KL?

13

Entropy

min
θ

DKL(Pθ | |Pexpert)

min
θ ∑

ξ

Pθ(ξ)log
Pθ(ξ)

Pexpert(ξ)

min
θ

− ∑
ξ

Pθ(ξ)log Pexpert(ξ) − H(Pθ( . ))

Do we 
know this?



Estimating

Divergences



KL is part of a spectrum of divergences
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Df(P | |Q) = ∑
x

Q(x) f ( P(x)
Q(x) )

f-divergence: A family of divergences  

Where f() is a convex function

Ali and Silvey, 1966



KL is part of a spectrum of divergences

16
Nowozin et al. 2017



Okay fine … but how do 
we estimate these 

divergences when all we 
have are expert samples?
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Use GANs to estimate divergence!
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Generator Discriminatorθ

Maximally discriminate 
between learner and generator 

samples

Minimize discriminator

loss!

Nowozin et al. 2017



Use GANs to estimate divergence!
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max
ϕ

min
θ

𝔼ξ∼Pθ(ξ)[Cϕ(ξ)] −𝔼ξ∼Pexpert(ξ)[ f*(Cϕ(ξ))]



The Rise of Adversarial Imitation Learning
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JS-Divergence Reverse-KL Divergence

Jeffrey Divergence State-Marginal f-divergence



Which divergence 
do we care about?



What divergence do we care about?
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f-divergence are great and all, but which one 
do we actually care about?



What divergence do we care about?
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What we actually care about is matching Performance Difference

J(π) = J(π*)
𝔼ξ∼Pθ(ξ)c(ξ) = 𝔼ξ∼Pexpert(ξ)c(ξ)

But we don’t know the costs c(.) 



What divergence do we care about?
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What we actually care about is matching Performance Difference

J(π) = J(π*)
𝔼ξ∼Pθ(ξ)c(ξ) = 𝔼ξ∼Pexpert(ξ)c(ξ)

But we don’t know the costs c(.) 

Costs are just weighted combination of features. What if we just 
matched all the expected features?
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(Unknown) expert distribution

Proposal: Match cost features!
Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

All we see are 

expert samples

Learner can also

generate samples
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(Unknown) expert distribution

Proposal: Match cost features!
Pexpert(ξh)

Learn distribution over trajectories

Pθ(ξ)

All we see are 

expert samples

Learner can also

generate samples

𝔼ξh∼Pexpert(.) f1(ξh) = 𝔼ξ∼Pθ(.) f1(ξ)
𝔼ξh∼Pexpert(.) f2(ξh) = 𝔼ξ∼Pθ(.) f2(ξ)

𝔼ξh∼Pexpert(.) fk(ξh) = 𝔼ξ∼Pθ(.) fk(ξ)



Let’s 

formalize!



Maximum Entropy Inverse Optimal Control
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Maximum Entropy Inverse Optimal Control
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min
θ

1
N

N

∑
i=1

− log Pθ(ξh
i |ϕi)

Max lik. of human traj

Given dataset: {ξh
i , ϕi}N

i=1
(Human demo) (Map)

Solve for cost Cθ(ξ)

Pθ(ξ |ϕ) =
1

Z(θ, ϕ)
exp(−Cθ(ξ, ϕ))

More costly traj, less likely

Maximum Entropy Inverse Optimal Control

Learner traj

Human 
demonstration
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control

Learner 
traj

Human 
demonstration
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control
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for i = 1,…, N # Loop over datapoints

ξi ∼
1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal Control



Deep Max Ent
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https://www.youtube.com/watch?v=hXxaepw0zAw
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Hard

Non-realizable expert + 

limited expert support


Even as , 
behavior cloning 

N → ∞
O(ϵT2)

Requires interactive expert 
(DAGGER / EIL) to 

provide labels  ⇒ O(ϵT)

Easy
Se
tt
in
g

Expert is realizable




As , drive down 
 (or Bayes error) 

πE ∈ Π

N → ∞
ϵ = 0

Nothing special.  

Collect lots of data and 

do Behavior CloningSo
lu
tio
n

Medium

Non-realizable expert

but full expert support


Even as , 
behavior cloning 

N → ∞
O(ϵCT)

Requires interactive simulator 
(MaxEntIRL) to match 

distribution ⇒ O(ϵT)

where C is conc. coef
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tl;dr

 X

Human demonstration

Learner path (optimal)

for i = 1,…, N # Loop over datapoints

ξ*i = min
ξ

[Cθ(ξ, ϕi) − γ(ξ, ξh)]
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξ*i , ϕi) + ∇θR(θ)]
# Call planner!

# Update cost(Push down human cost) (Push up planner cost)

Cost map

Learning to Search (LEARCH)

 X

for i = 1,…, N # Loop over datapoints

ξi ∼ 1
Z

exp (−Cθ(ξ, ϕi))
θ+ = θ − η[∇θCθ(ξh

i , ϕi) − ∇θCθ(ξi, ϕi)]

# Call planner!

# Update cost
(Push down human cost) (Push up planner cost)

Maximum Entropy Inverse Optimal ControlWhen the expert is  

Suboptimal 

Noisy 

Privileged Information 

LEARCH does NOT converge!!

 X


