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The Distribution Matching Problem

P expert(éh) /\ / P 6’(5)

(Unknown) expert distribution Learn distribution over trajectories

L earner can also
All we see are

expert samples

generate samples

What loss - ']
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KL Divergence: A common measure!

Given two distributions P(x) and Q(x)

P(x)
Q(x)

Dy, (P|1Q) = ) P(x)log



KL Divergence: A common measure!

Pexpm(é‘h)/\

(Unknown) expert distribution Learn distribution over trajectories

I expert(é)
Py(&)

D KL(P expertl |P 6’) — Z I expert(f)k)g
S

Can we m@in Dy (P, pert| | Pg) 1t we don't know P, 7



KL Divergence: A common measure!

Pexpert(é )/\ PH(@

(Unknown) expert distribution Learn distribution over trajectories

Yes!

. PorperdS)
m;n D KL(P expert‘ ‘P (9) — Z P expert(f)l()g PI;( 5)

S
min - ; P, per(E0g Py(E)

Only need samples .. _ “ep o108 Py(&)
expert
from expert! 0





https://www.youtube.com/watch?v=mTfVXo8Yc3E

Flying through a forest

| \ Expert flies left
[ ] and right of the tree

Given samples from expert




Flying through a tforest

Expert flies left
and right of the tree

Given samples from expert

Let's say we want to learn

P,(&), a gaussian over traj

m;n D KL( xpert‘ |P 9)

What will we learn?






Think-Pair-Share

Think (30 sec): What Gaussian will we learn by minimizing KL

divergence m@in — .. P, oE) log Py(¢) 7

Pair: Find a partner

Share (45 sec): Partners exchange
ideas
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Forward KL is Mode-Covering!

Makes sure probability is
non-zero for every action
the expert takes

Maximizes recall

But sacrifices precision, i.e.
can leave expert support
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Well what about Reverse KL?

m;n DKL(P Hl ‘ xpert)
Py(S)
Py(E)1
mln Z @(5) 08 expert( 5)

min Z Py(EN10g P,por() — HPY( )

Do we Entropy

know this?
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KL is part of a spectrum of divergences

f-divergence: A family of divergences

P(x)
D/(P —
(P||Q) Z Q(x)f( Q(x))

Where f() is a convex function

Ali and Silvey, 1966
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KL is part of a spectrum of divergences

Name D¢ (P||Q) Generator f(u)
Kullback-Leibler [ p(z) log 234 da ulog u
Reverse KL | q(z) log ;’7%% dz —logu
Pearson * | (Q(x)p_(f)(m))z dx (u—1)?
Squared Hellinger [ (\/p(:z:) — \/q(a:))z dx (Vu—1)°

Jensen-Shannon

GAN

1 PAZ) S
2 fp(CE) log P(:c)p-l(-q)(:c) - q(z) log P(fl?)qiq)(m) dz

—(u+1)log *£* + ulogu

2p(x 2q(x
J p(z) log p(wi(rq)(w) +q(z) log p(w)q-(kq)(fv) dz — log(4)

ulogu — (u + 1) log(u + 1)

Nowozin et al. 2017
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Okay fine ... but how do
we estimate these
divergences when all we
have are expert samples?
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Use GANSs to estimate divergence!

Maximally discriminate

Minimize discriminator

between learner and generator
loss!
samples

Nowozin et al. 2017



Use GANSs to estimate divergence!

mgm maX Eep, o Cp(S)] —Egip erd &) [/*(C ()]
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< The Rise of Adversarial Imitation Learning@

JS-Divergence Reverse-KL Divergence
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Which divergence
do we care about?




What divergence do we care about?

f-divergence are great and all, but which one
do we actually care about?
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What divergence do we care about?

What we actually care about is matching Performance Difference
J() = J(7™)
Eepye¢(©) = Eeop, o)

But we don't know the costs c(.)
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What divergence do we care about?

What we actually care about is matching Performance Difference
J() = J(7™)
Eepye¢(©) = Eeop, o)

But we don't know the costs c(.)

Costs are just weighted combination of features. What it we just
matched all the expected features?
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Proposal: Match cost features!

P expert(éh) /\ / P 6’(5)

(Unknown) expert distribution Learn distribution over trajectories

L earner can also
All we see are

expert samples

ya e

generate samples
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Proposal: Match cost features!

Pexpm(é‘h)/\

(Unknown) expert distribution

All we see are
expert samples

P

_ N
_thPexpert(-) f.l(g ) o

hy
_ghNPexpert(-) ]Cz(g ) o

h ._
“enep, () JHE) =

‘ Py(S)

Learn distribution over trajectories

~enpy() N1(S
“enpy() J2(S

L earner can also
generate samples

; 70& ']

“eop,() Ji(S)



Let's
formalizel




Maximum Entropy Inverse Optimal Control
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Maximum Entropy Inverse Optimal Control

LEO: Learning Energy-based Models in
Factor Graph Optimization
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Maximum Entropy Inverse Optimal Control
demtl:mrsii]:tion ﬁ/jwmv\k {/' " \
\A«/ u
Given dataset: {gih’ ¢i}£’\;1 Solve ftor cost Cﬁ(é)

(Human demo) (Map)

— log Py(£" | ) PyS ) =

Z(H, ¢) €Xp(— Cﬁ(ga ¢))

Max lik. of human traj More costly traj, less likely
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Maximum Entropy Inverse Optimal Control

Human
demons tration

——

fori=1,....N
|
~ EeXP (_CH( a¢i))

0" =0 — ﬂ[vece(ffh ¢) — Vo Cy( ¢)]

(Push down human (Push up plan



Maximum Entropy Inverse Optimal Control

74
_ g

fori=1,....N

: C
~ EéXP (_ o<, ¢))

0" =0 — ﬂ[vece(e&h ¢) — Vo Cy( ¢)]

(Push down human (Push up plan




Maximum Entropy Inverse Optimal Control

/"q“g

o
A

= g
fori=1,....N

i 1 C
- EﬁXP (_ o<, ¢))

07 =0 — ﬂ[vgce(fh ¢) — Vece(fp ¢)]

(Push down human (Push up plan




Maximum Entropy Inverse Optimal Control

N N
S Wl

74
_ g

N

fori=1,....N

i 1 C
- EﬁXP (_ o<, ¢))

07 =0 — ﬂ[vgce(fh ¢) — Vece(fp ¢)]

(Push down human (Push up plan




Deep Max Ent

Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

L

Markus Wulfmeier!, Dominic Zeng Wang! and Ingmar Posner!

Sensory Input Initial States

Demonstration Samples

State Visiting
Frequencies

Determine Loss &
Gradient

Expected State
Visiting Frequencies

Reward Approximation

- ——————— -

Gradient Backpropagation

——— e ———

Solve MDP ‘
A

Reward
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autonomous exeo.ltion
1x real-time

il E

; . Al
= A
4 goal |
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https://www.youtube.com/watch?v=hXxaepw0zAw

Medium (° ¢ Hard (X

Expert is realizable Non-realizable expert Non-realizable expert +
oD at eIl but full expert support limited expert support
=
o As N — oo, drive down Even as N — o0, Even as N — o0,

e = 0 (or Bayes error) behavior cloning O(eCT) behavior cloning O(eT?)

where C is conc. coeff

L | )

S Nothing special. Requires interactive simulator Requires interactive expert
E Collect lots of data and (MaxEntIRL) to match (DAGGER / EIL) to

O

n

do Behavior Cloning distribution = O(eT) provide labels = O(eT)
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| d ~lLearning to Search (LEARCH)
t . r g b i Fay T /\
& {;:H’. 'J | | :‘ | |

fori=1,...,

N

= min[Cy(, ¢;) — 7(&, EM]
0" =0 — ﬂ[Vece(fh Cb) — VyCy( a¢i) + VoR(0)]

When the expert is

Suboptimal
Noisy

(Push down human (Push up planner cost)

Maximum Entropy Inverse Optimal Control

Privileged Information fori=1,...,N

: C
NEeXP (_ (9( 9¢))

| |
LEARCH does NOT converge!l 0 =0 — ”I[Vece(fh 45) _ VQCQ( ¢)]
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