1 Reminder: Motivating example: modeling small-talk vs. non-small talk

1.1 Sample data

Written “vertically” instead of “horizontally” to leave room to write.
Two sequences (in this case, monologue documents):

 hi
 i
 agree
 thanks
 bye

 hi
 sell
 hi [some stock ticker symbol]
 now
 thanks

1.2 A skeleton generative story

1. Pick a sentence length ℓ.
2. Pick a sequence of ℓ states: where the two possible state types are st for small talk, nst for not small-talk
3. For each state, pick a word according to that state’s distribution over single words.

1.3 Ideas for instantiation (these are informal “priors”)

1. (from last lecture) st might have a higher probability of being in longer sentences than in shorter sentences.
2. (motivation for step 2 and 3 of the generative story) st might have a higher probability of including the word “hi” than nst.
3. (new) st might have a higher probability of starting or ending the sentence than nst.

1.3.1 “Quiz”: What is the probability of our first sample-data sequence?

Assume we pick specific lengths (not length “buckets” like “short” vs. “long”)

- $P(\text{a length-5 sequence (with respect to all possible lengths)}) \times P(st \ nst \ nst \ st \ st) \times P(\text{hi | st}) P(\text{i | nst}) P(\text{agree | nst}) P(\text{thanks | st}) P(\text{bye | st})$
- $P(\text{a length-5 sequence}) \times \sum_{\text{state sequences } \sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5} P(\text{hi | } \sigma_1) P(\text{i | } \sigma_2) P(\text{agree | } \sigma_3) P(\text{thanks | } \sigma_4) P(\text{bye | } \sigma_5)$
- $P(\text{a length-5 sequence}) \times \sum_{\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5} P(\sigma_1 \sigma_2 \sigma_3 \sigma_4 \sigma_5) P(\text{hi | } \sigma_1) P(\text{i | } \sigma_2) P(\text{agree | } \sigma_3) P(\text{thanks | } \sigma_4) P(\text{bye | } \sigma_5)$
- Something else
About the discussion of wanting to model the fact that small talk is more likely at the beginning or end of sequences: I’ve decided talking about transitions vs non-transitions is a red herring.

Instead (and again assuming the sequence length ℓ was already fixed) ...

1. You might consider modeling the choice of ℓ-state sequence to be drawn at random from among all ℓ-state sequences as if there’s an 2^ℓ-sided die being thrown. That’s 2^ℓ numbers needed, one for each side of the die.

2. Or, you might decide that for each word position, a two-sided coin is flipped to decide whether it’s each individual ℓ-state sequence to be “atomic” (not decomposable) to There are 2^ℓ such numbers involved.

2. Or, you might decide

1. If you think each ℓ-state sequence should be modeled individually with the state history taken into account, there are 2^ℓ such states.

2. But if you think that the state at position i can be considered independent (so you don’t have to estimate transition probabilities, since they are position-independent), you get just these states.

$$\{\text{st, nst}\} \times \{1, 2, \ldots, \ell\}$$

This is $2 \times \ell$ states, not 2^ℓ, which is a whopping savings in parameters compared to being exponential in ℓ. (When I was talking I thought that there seemed to be too many!)

[There are actually fewer free parameters than $2 \times \ell$; for any position k, if you know $p(\text{statword}_k)$, then you already know $p(\text{nst at word } k)$, because they sum to one.]

2 Measuring the difference between two “single-word” distributions

We restrict attention to proper distributions $q(\cdot)$ and $r(\cdot)$ over finite “vocabulary” $V = \{v_i\}$. We write q_i and r_i for $q(v_i)$ and $r(v_i)$.

• But LMs give probs to an unbounded number of strings? One can take V to be single words (or whatever), and for a given language model $p(\cdot)$, set p_i to $p(v_i | \text{some context of interest})$ normalized by $\sum_j p(v_j | \text{some context of interest})$.

![Image of distribution comparison](image)

The surprisal1:

$$- \log(r_i) = \log \frac{1}{r_i}$$

(1)

can be thought of as how surprised we should be from the perspective of using r as a model to see v_i, or r’s surprised-ness or surprisingness for v_i. The base of the log is customarily taken to be 2, which makes this surprisingness number interpretable as a number of bits of information.2

1According to Wikipedia, the term was coined in Tribus, 1961, *Thermostatics and Thermodynamics*.

2Indeed, a much more common interpretation of equation 1 is as a number of bits needed to encode v_i assuming the distribution r over V.
2.1 Cross-entropy

If we considered the “reference” distribution to be \(q \), then the cross-entropy

\[
H(q||r) = \sum_i q_i \log \frac{1}{r_i}
\]

(2)

is the expected surprisedness for \(r \) with respect to reference distribution \(q \).

2.2 KL-Divergence

\[
D(q||r) = \sum_i q_i \log \frac{q_i}{r_i}
\]

(4)

2.3 Jensen-Shannon divergence

See Lin, Jianhua. 1991. Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory 37(1): 145-151. Let \(\text{avg}_{q,r} \) be the average distribution between \(q \) and \(r \).

\[
JS(q,r) = \frac{1}{2} \left[D(q||\text{avg}_{q,r}) + D(r||\text{avg}_{q,r}) \right]
\]

(5)

2.4 Skew divergence

\[
skew_\beta(q||r) = D(q||\beta \cdot r + (1 - \beta)q)
\]

(6)

Values used include \(\beta = .99 \).

3 How you often see this in papers: If the “reference” distribution is taken to be the one induced from the empirical counts from a sample \(S = w_1w_2\ldots \), where each \(w_k \in V \) and the length of the sample is \(L \), then this can be refactored as:

\[
\hat{H}_S(r) = \frac{1}{L} \sum_{k=1}^L \log \frac{1}{r(w_k)}
\]

(3)