1 “Trailer”

Two papers it might be worth skimming over the next few days or the next week:

I mention these papers now because the topic connects to:

- our discussion last lecture of the constant entropy principle (Genzel and Charniak, 2002), also known as the uniform information density principle (Levy and Jaeger, 2007)
- upcoming discussion of intra-sentential syntactic structure
- the notion that language is social, involving people communicating
2 The Brown clustering n-gram language model

\[P(w_k|w_1^{k-1}) = P(w_k|c_k)P(c_k|c_1^{k-1}) \]

(1)

3 Useful information-theoretic quantities

3.1 Reminders

Surprisal:

\[-\log(r_i) = \log \frac{1}{r_i} \]

(2)

Surprisal can also be considered to be “amount of information”, although to some the intuition seems backwards. An analogy: suppose you know that an event \(e \) happens with probability 1. Then \(e \) happens. Have you learned anything from \(e \) happening? No; so you have gained no information from it.

If we consider the “reference” distribution to be \(q \), then the **cross-entropy**

\[H(q||r) = \sum_i q_i \log \frac{1}{r_i} \]

(3)

is the expected surprisal for \(r \) with respect to reference distribution \(q \).

The Kullback-Leibler (KL) divergence is a “corrected” cross-entropy achieving a minimum of 0 at \(q = r \):

\[D(q||r) = \sum_i q_i \log \frac{q_i}{r_i} \]

(4)

3.2 “Derived” quantities

The **entropy** (think of it as the “self cross-entropy”):

\[H(q) = \sum_i q_i \log \frac{1}{q_i} \]

(5)

The **mutual information** can be considered to be the KL divergence between the joint distribution of two random variables and the joint distribution if they were independent.

We exemplify in terms of the Brown clustering paper. Let us suppose that our random variables are \(C_1 \) and \(C_2 \), meaning something like “the next cluster (or word type)” and “the cluster (or word type) that would immediately follow”. Then, we can consider the KL divergence between \(P_{\text{dependent}} = p(C_1, C_2) \) and \(P_{\text{independent}} = p(C_1)p(C_2) \):

\[\sum_{c_1,c_2} p(C_1,C_2) \log \frac{p(C_1,C_2)}{p(C_1)p(C_2)} = \sum_{c_1,c_2} p(C_1,C_2) \log \frac{p(C_2|C_1)}{p(C_2)} \]

(6)