1. So far, we’ve seen first-order-logic-style representations of semantics

 a) “cashiers put candy in boxes” → put'(cashiers', candy', in'(boxes'))

 [We need the primes for the board, where I can’t write italics]

 From the reading: importance of predicates, arguments, and roles.

2. Some subproblems with the above style:
 a) Do we need a separate predicate for each arity (= # of arguments) and argument type?
 i. “I ate” →
 ii. “I ate a sandwich” →
 iii. “I ate at my desk” →

 b) For inference (and from the reading), events are important.

 “Neo-Davidson” event representation: events are objects; each argument gets separate predicate.

 i. could become ∃ e eating'(e) ∧ eater'(e, speaker')
 ii. (treated independently) could become
 ∃ e eating'(e) ∧ eater'(e, speaker') ∧ eaten'(e, sandwich')

 Exercise 1: How could you represent iii (treated independently of i. and ii.)?

 Exercise 2A: give a representation of the combination of assertions ii and iii such that it follows that the speaker ate a sandwich at their desk.

 Exercise 2B: would you change your response so that it doesn’t necessarily follow that the speaker ate a sandwich at their desk

1 Organization follows JM 3rd edition §16.4 (stopping at 16.4.1 exclusive), examples taken, with a few simplifications, from there.

2 Let’s just take speaker’ for granted as a grounded item.
A CCG parser creates the following structures:

Example: 78 (FALSE)
T: Clinton’s new book is not big seller here.
H: Clinton’s book is a big seller.

These are translated into first-order logic and a theorem prover is run.

4. AMR by example:

http://cohort.inf.ed.ac.uk/amreager.html?lang=en&sent=i+ate+a+sandwich+at+my+desk

```
# :: snt i ate a sandwich at my desk
# :: alignments 0-1|0.0 1-2|0.3-4|0.1 6-7|0.2
(v2 / eat-01
 :ARG0 (v1 / i)
 :ARG1 (v3 / sandwich)
 :location (v4 / desk))
```