1. Let \(w = w_1 \ldots w_n \) be a length-\(n \) sentence. For now, assume no adjunction.

When is an initial tree \(\alpha \) be the root of a derivation tree for \(w \)?

\[
S \quad \leftarrow \quad \text{leaf 1} \quad \text{leaf 4} \\
\text{leaf 2} \quad \text{leaf 3}
\]

... if \(w = w'_1 \ldots w'_i \) for some substrings \(w'_i \), and each \(\text{leaf}_i \Rightarrow* w'_i \).

(Either \(\text{leaf}_i \) is a sequence of terminals or substitution of some tree \(\hat{\alpha} \) into \(\text{leaf}_i \) eventually yields a fringe that is \(w'_i \).)

This suggests a "left-to-right" search of the leaves of a possible start tree:

for \(i = 1 \ldots \# \) of leaves:

given what \(\text{leaf}_1 \ldots \text{leaf}_{i-1} \) cover, figure out what tree could substitute \(\hat{\alpha} \) into \(\text{leaf}_i \) and what \(w'_i \) — a section of \(w \) — is.

2. Dot notation: for tracking search in an elementary tree.

\[
\begin{array}{c}
A \\
\text{}``\text{everything to the left has been checked}``
\end{array}
\]

\[
\begin{array}{c}
X \cdot Y \\
\text{}``\text{everything to the right must be verified}``
\end{array}
\]

state:

\[
[\alpha, \text{address of } X \text{ in } \alpha, \text{right}, \quad]
\]

\[
[\alpha, \text{address of } Y \text{ in } \alpha, \text{left}, \quad]
\]

3. Dynamic programming idea:

\[
\begin{array}{c}
\text{state:} \\
[\alpha, \quad]
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]

\[
\begin{array}{c}
A \quad \text{leaf 1} \\
\text{leaf 2} \quad \text{leaf 3}
\end{array}
\]