\[
\sum_{t \in \{y,n\}} P(A_j = d[j] | T_j = t, R_q = y) P(T_j = t | R_q = y).
\]

The \(A_j \) can be assumed conditionally independent of \(R_q \) given \(T_j \) because the event that term \(j \) appears \(d[j] \) times in the document “happened” before the query was issued and when it happened it was based on whether the document was on the topic of term \(j \) or not. Hence we can write

\[
P(A_j = d[j] | R_q = y) = \sum_{t \in \{y,n\}} P(A_j = d[j] | T_j = t) P(T_j = t | R_q = y)
\]

Defining the probability that the document is on the topic of term \(j \) given that it is relevant as \(tr_j = P(T_j = y | R_q = y) \) and the probability that the document is on the topic of term \(j \) in general as \(tg_j = P(T_j = y) \) we can get the following scoring function

\[
\prod_{j:q[j],d[j]>0} \frac{tr_j + (1 - tr_j) \left(\frac{\mu_j}{\tau_j} \right)^{d[j]} e^{\tau_j - \mu_j} \times t g_j e^{\mu_j - \tau_j} + (1 - t g_j) }{ tr_j e^{\mu_j - \tau_j} + (1 - tr_j) }
\]

by dividing the numerator and the denominator of the original scoring function by \(\tau_j^{d[j]} e^{-\tau_j - \mu_j} \). This expression has many unknowns but we can still study it as a function of the term frequency \(d[j] \). Stay tuned . . .

5 Finger Exercises

1. In this exercise we will investigate the scoring functions we get by plugging in different distributions in the place of Poisson using the approach in section 3. Suppose we can use continuous distributions to model the term frequencies and we also don’t have to worry about continuity corrections. Let us assume that the frequency of term \(j \) is distributed with some distribution \(f \) whose unknown mean is \(\mu_j \) for relevant documents and \(\nu_j \) for general documents.\(^1\) What is the scoring function in the following cases?

 (a) \(f \) is the normal distribution with variance \(\sigma_j^2 \).

 (b) \(f \) is the double-exponential\(^2\) (Laplace) distribution with variance \(2\sigma_j^2 \).

 (c) \(f \) is the exponential distribution. Assume \(P(A_j = 0) = \lim_{x \to 0^+} f(x) \)

2. Let’s view the document as a vector of term frequencies and try an approach motivated by the fact that we didn’t use the binomial distribution for our models. What happens

\(^1\)Caveat: Some sort of “extrinsic” length normalization is needed, similar to the Poisson case, because a “mean of five term occurrences” should presumably be relative to the length of the document.

\(^2\)Note that the normal and double exponential distributions may allocate a significant amount of probability mass to negative counts and thus may not provide a realistic generative model for term occurrences.
if we model the number of occurrences of all the terms in a document as a multinomial
distribution and we rank documents according to

\[
P(\tilde{A} = \tilde{d}|R_q = y) \frac{1}{P(\tilde{A} = \tilde{d})}
\]

where \(\tilde{d} \) is the vector of all term frequencies? Assume both the numerator and the
denominator are multinomially distributed but the probabilities of the outcomes are
different. For each term \(j \) we will have a probability \(\theta_{jg} \) of occurrence in a general
document and a probability \(\theta_{jr} \) of occurrence in a relevant document. Assume that:

- For the terms that don’t appear in the query, \(\theta_{jr} = \beta \theta_{jg} \)
- For the terms in the query, \(\theta_{jr} = \theta_{jg} + \alpha \)
- The sum of the term frequencies in a document for the terms that don’t appear in
 the query is \(\delta \). This is similar to assuming that the documents have equal lengths.

and \(\alpha, \beta \) and \(\delta \) are constants independent of the document and the term.\(^3\) What estimate
for the probability of a term in a general document can we use in order to get
an IDF in the final scoring function? Is it a good estimate?

3. Let’s assume that there are \(k \) topics \(t_1, t_2, \ldots, t_k \) in the corpus and each term \(j \)
appears in topic \(t_i \) with probability \(\theta_{ji} \). Define an appropriate embedding of terms into \(\mathbb{R}^n \) and
estimate the \(\theta_{ji} \) using, for example, the EM algorithm to learn a mixture of gaussians
(or your favorite fuzzy clustering algorithm). In other words, terms are points in \(\mathbb{R}^n \)
and topics are clusters of terms. What would be an appropriate generative model for
documents in this setting?

6 Solutions

1. Before we begin our derivations, we will discuss the distributions that we use to gain
some intuition on what kind of events they try to model. Figure 1 shows a plot of the
three distributions with mean 10 and where applicable \(\sigma = 1 \). We see that the normal
and double exponential have similar shapes with the mode equal to the mean and
most of their probability mass around the mean although the double exponential has
heavier tails than the normal. On the other hand the exponential distribution is neither
symmetric nor concentrated around its mean. Its mean and variance depend only on
one parameter and it allocates probability mass only to positive numbers. The normal
distribution is mostly used to model measurements of things that happen because many
small additive effects are contributing to them \([2]\), the double exponential is practically

\(^3\)We are willing to assume everything to make the analysis tractable...
used as an alternative to the normal and the exponential distribution is used to model waiting times between events following a Poisson distribution. Our conclusion is that none of these distributions are actually good models for the term counts but they may still be useful.

(a) Recall the Normal distribution \(p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \). The scoring function becomes

\[
\prod_{j:q[j]\neq 0} \frac{1}{\sigma_j \sqrt{2\pi}} e^{-\frac{(d[j]-\mu_j)^2}{2\sigma_j^2}} \times \frac{1}{\sigma_j \sqrt{2\pi}} e^{-\frac{\nu_j^2}{2\sigma_j^2}} = \\
\prod_{j:q[j]\neq 0} e^{-\frac{(d[j]-\mu_j)^2+\nu_j^2}{2\sigma_j^2}} = \\
\prod_{j:q[j]\neq 0} e^{\frac{d[j](\mu_j-\nu_j)}{\sigma_j^2}} = \sum_{j:q[j],d[j]>0} d[j] \frac{\mu_j-\nu_j}{\sigma_j^2}.
\]

\[4\] For example, a Bayesian interpretation of ridge regression is that we do linear regression with a normal prior on the coefficients while a Bayesian interpretation of the Lasso is that we do linear regression with a Laplace prior on the coefficients [4].
We see that the term frequency comes up in the formula, but not anything resembling the IDF. Note that the Poisson model naturally yielded an IDF factor. Each term \(j \) such that \(q[j] > 0, \ d[j] > 0 \) is weighted by the difference \(\mu_j - \nu_j \) which we expect to be positive. The bigger this difference, the more weight term \(j \) will get.

(b) For the Laplace distribution \(p(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma} \), the scoring function becomes

\[
\prod_{j: q[j], d[j] > 0} \left(\frac{1}{2\sigma_j} e^{-|d[j]-\nu_j|/\sigma_j} \right) = \frac{1}{2\sigma_j} e^{-|d[j]-\nu_j|/\sigma_j} = \frac{1}{2\sigma_j} e^{-|d[j]-\nu_j|/\sigma_j} \prod_{j: q[j], d[j] > 0} e^{-\frac{|d[j] - \mu_j| + |d[j] - \nu_j| - \nu_j + \mu_j}{\sigma_j}}
\]

We have three cases

\[
-|d[j] - \mu_j| + |d[j] - \nu_j| - \nu_j + \mu_j = \begin{cases} 0 & \text{if } d[j] < \nu_j < \mu_j \\
\frac{2(d[j] - \nu_j)}{\sigma_j} & \text{if } \nu_j < d[j] < \mu_j \\
\frac{2(\mu_j - \nu_j)}{\sigma_j} & \text{if } \nu_j < \mu_j < d[j]
\end{cases}
\]

This scoring function is funny because when the term frequency is less than what we expect even for general documents it doesn’t contribute to the scoring function. When the term frequency is somewhere between what we expect for relevant and general documents, it contributes to the score by the amount of the difference from the mean of general documents. When the term frequency is more than what we expect to find in relevant documents the contribution is a constant independent of \(d[j] \) (resistance to spam?). Also notice that \(\mu_j \) appears explicitly in only one case which makes it easy to provide approximations to the scoring function. For example, if we assume that we always have \(d[j] < \mu_j \) then the scoring function can be easily evaluated.

(c) Finally the scoring function for the exponential distribution \(p(x) = \frac{1}{\mu} e^{-x/\mu}, \ x > 0 \) becomes

\[
\prod_{j: q[j], d[j] > 0} \left(\frac{1}{\mu_j} e^{-\frac{d[j]}{\nu_j}} \right) \times \frac{1}{\nu_j} \lim_{x \to 0^+} e^{-\frac{x}{\nu_j}} = \prod_{j: q[j], d[j] > 0} e^{-\frac{d[j]}{\nu_j} \frac{d[j]}{\nu_j} \text{ rank}} \prod_{j: q[j], d[j] > 0} d[j] \frac{\mu_j - \nu_j}{\mu_j \nu_j}
\]

Despite the differences between the normal and the exponential, this scoring function looks like the one from (a). Here, we divide by the geometric mean \(\mu_j \nu_j \) of the variances \(\nu_j^2 \) instead of the single variance that we had in (a).
2. The probability distribution of the multinomial distribution is

\[P(\vec{A} = \vec{d}) = \frac{(\sum_{j=1}^{m} d[j])!}{\prod_{j=1}^{m} d[j]!} \prod_{j=1}^{m} \theta_{d[j]} \]

where \(\theta_j \) is the probability of outcome \(j \) (term \(j \) in our case). Plugging in the multinomial in (1) we get

\[
\frac{(\sum_{j=1}^{m} d[j])!}{\prod_{j=1}^{m} d[j]!} \prod_{j=1}^{m} \theta_{d[j]} = \prod_{j:d[j]>0} \left(\frac{\theta_{d[j]}}{\theta_{jg}} \right)^{d[j]} \prod_{j:d[j]>0,q[j]}>0} \left(\frac{\theta_{d[j]}}{\theta_{jg}} \right)^{d[j]} \]

\[
\beta \sum_{j,q[j]=0}^{d[j]} d[j] \log \left(\frac{\theta_{d[j]}}{\theta_{jg}} \right) = \sum_{j:d[j]>0,q[j]}>0} d[j] \log \left(1 + \frac{\alpha}{\theta_{jg}} \right) .
\]

Now if we use the estimate
\[
\hat{\theta}_{jg} = \frac{n_j}{N}
\]

where \(n_j \) is the number of documents that contain term \(j \) and \(N \) is the number of documents in the corpus then the scoring function will have an IDF

\[
\sum_{j:d[j]>0,q[j]}>0} d[j] \log \left(\frac{\theta_{d[j]}}{\theta_{jg}} \right) = \sum_{j:d[j]>0,q[j]}>0} d[j] \log \left(1 + \frac{\alpha}{\theta_{jg}} \right) .
\]

However this estimate of \(\theta_{jg} \) is very rough compared to something like:

\[
\hat{\theta}_{jg} = \frac{1}{|C|} \sum_{d \in C} \sum_{k} \frac{TF_j(d)}{TF_k(d)}
\]

where the sum in the denominator is over all terms in document \(d \) and \(C \) is the corpus.

A Correction for the Previous Lecture

Let us recall the scoring function from the previous lecture:

\[
\prod_{j:d[j]=1, q[j]=1} \frac{P(A_j = d[j]|R_q = y)}{P(A_j = d[j])} \times \frac{P(A_j = 0)}{P(A_j = 0|R_q = y)}
\]

(2)