Information extraction

• Introduction
 – Task definition
 – Evaluation
 – IE system architecture
• Acquiring extraction patterns
 – Manually defined patterns
 – Learning approaches
 • Semi-automatic methods
 • Fully automatic methods
 – Finite-state methods
• Named entity detection

Issues...

• tension between \textit{domain-independent} and \textit{domain-dependent} language processing
 – treating task in a domain-independent way allows the use of general IR/NLP techniques and tools
 – treating task in a domain-dependent way allows for tailoring of techniques for better performance
• IE is generally handled as \textit{domain-specific text understanding}
 – key system components need to be re-built for each new domain
 – difficult and time-consuming to build if constructed manually
 • Initially, \textasciitilde{} 6-12 months/system for IE from unstructured text
 – requires the expertise of computational linguists

Exercise: changes in management

The company also said its president and former chairman both resigned.

Evergreen said Barry Nelsen, who had a heart-bypass operation last week, resigned as president and chief executive. The board formally accepted the resignation of Thomas Casey, its former chairman, who stepped down effective Feb. 2.
Information extraction

- **Introduction**
 - Task definition
 - Evaluation
 - IE system architecture

- **Acquiring extraction patterns**
 - Manually defined patterns
 - Learning approaches
 - Semi-supervised methods
 - Fully supervised methods
 - Finite-state methods

- **Named entity detection**

Machine learning methods

- **acquire linguistic knowledge** by applying statistical and symbolic learning methods; derive training examples from the texts themselves

- **automate** the construction of each IE system component

- improve **robustness** of final systems while maintaining (or at least approaching) the accuracies of handcrafted systems

Learning IE patterns from examples

- **Goal**
 - Given a training set of *annotated* documents [answer keys],
 - Learn extraction patterns for each slot using an appropriate machine learning algorithm.

- **Options**
 - Memorize the fillers of each slot?
 - Generalize the fillers using context and
 - p-o-s tags?
 - phrase structure (NP, V) and grammatical roles (SUBJ, OBJ)?
 - semantic categories?

Learning IE patterns

- **Methods vary with respect to**
 - The class of pattern learned (e.g. lexically-based regular expression, syntactic-semantic pattern)
 - Training corpus requirements
 - Amount and type of human feedback required
 - Degree of pre-processing necessary
 - Other resources/knowledge bases required
Syntactico-semantic patterns

The twister occurred without warning at approximately 7:15 p.m. and *destroyed two mobile homes.*

Pattern:

- Trigger: “destroyed”
- Condition: active voice verb?
- Slot: Damaged-Object
- Position: direct-object
 - Condition: DO is a physical-object?

from Cardie [1997]

Pattern templates

Noun phrase extraction only

- `<subject>` `<passive-verb>`
- `<subject>` `<active-verb>`
- `<subject>` `<infinitival-verb>`
- `<subject>` `<auxiliary-verb>`++`<noun>`

* `<passive-verb>` `<dobj>`
 `<active-verb>` `<dobj>`
 `<infinitive>` `<dobj>`
 `<verb>`++ `<infinitive>` `<dobj>`
 `<gerund>` `<obj>`
 `<noun>`++ `<auxiliary>` `<dobj>`
- `<noun>`++ `<prep>` `<np>`
- `<active-verb>`++ `<prep>` `<np>`
- `<passive-verb>`++ `<prep>` `<np>`

Example

The twister occurred without warning at approximately 7:15 p.m. and *destroyed two mobile homes.*

Pattern:

- Trigger: “<verb>”
- Condition: active voice
- Slot: <slot-type> of <target-np>
- Position: direct-object
 - Condition: DO is <<semantic class> of <slot-type>>

Instantiation:

- Trigger: “destroyed”
 - Condition: active voice verb?
- Slot: Damaged-Object
- Position: direct-object
 - Condition: DO is a physical-object?
Learned terrorism patterns

- <victim> was murdered
- <perpetrator> bombed
- <perpetrator> attempted to kill
- was aimed at <target>

Bad patterns are possible
- took <victim>

They took 2-year-old Gilberto Molasco, son of Patricio Rodriquez, and 17-year-old Andres Argueta, son of Ernesto Argueta.

Natural disasters patterns

- Yesterday’s earthquake registered 6.9 on the Richter scale.
 - <subject> = disaster-event (earthquake) registered (active)
 - registered (active) <direct obj> = magnitude

- measuring 6.9 ...
 - measuring (gerund) <direct obj> = magnitude

- …sending medical aid to Afghanistan…
- …sending medical aid to earthquake victims
 - aid (noun)...in/to/for (prep) <obj> = disaster-event-location/victim

Autoslog algorithm

- Domain-independent
 - So require little modification when switching domains
- Requires (minimally) a partial parser
- Assumes semantic category(ies) for each slot are known, and all potential slot fillers can be tested w.r.t. them

Exercise: changes in management

The company also said its president and former chairman both resigned.

IO-person:out
Evergreen said Barry Nelsen, who had a heart-bypass operation last week, resigned as president and chief executive. The board

IO-person:out
formally accepted the resignation of Thomas Casey, its former chairman, who stepped down effective Feb. 2.
Advantages and Disadvantages

- Learns bad patterns as well as good patterns
 - Too general (e.g. triggered by “is” or “are” or by verbs not tied to the domain)
 - Too specific
 - Just plain wrong
 - Parsing errors
 - Target NPs occur in a prepositional phrase and Autoslog can’t determine the trigger (e.g. is it the preceding verb or the preceding NP?)
- Does not make good use of the training data
 - Requires that a person review the proposed extraction patterns, discarding bad ones
- No computational linguist needed (?)
- Reduced human effort from 1200-1500 hours to ~4.5 hours

Results

- 1500 texts, 1258 answer keys
- 4780 slots (6 types)
- Autoslog generated 1237 patterns
- After human filtering: 450 patterns
- Compare to manually built patterns

<table>
<thead>
<tr>
<th>System/Data Set</th>
<th>Recall</th>
<th>Precision</th>
<th>F-measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual/TST3</td>
<td>46</td>
<td>56</td>
<td>50.51</td>
</tr>
<tr>
<td>Autoslog/TST3</td>
<td>43</td>
<td>56</td>
<td>48.65</td>
</tr>
<tr>
<td>Manual/TST4</td>
<td>44</td>
<td>40</td>
<td>41.90</td>
</tr>
<tr>
<td>Autoslog/TST4</td>
<td>39</td>
<td>45</td>
<td>41.79</td>
</tr>
</tbody>
</table>

Information extraction

- Introduction
 - Task definition
 - Evaluation
 - IE system architecture
- Acquiring extraction patterns
 - Learning approaches
 - Semi-supervised methods for extraction from unstructured text
 - Fully supervised methods for extraction from structured text
 - Finite-state methods
- Named entity detection

Autoslog-TS

- Largely unsupervised
- Two sets of documents: relevant, not relevant
- Apply pattern templates to extract every NP in the texts
- Compute relevance rate for each pattern i:
 \[
 \text{Pr (relevant text | text contains } i) = \frac{\text{freq of } i \text{ in relevant texts}}{\text{frequency of } i \text{ in corpus}}
 \]
- Sort patterns according to relevance rate and frequency
 \[
 \text{relevance rate} * \log (\text{freq})
 \]
Covering algorithms

- **E.g. Crystal** [Soderland et al. 1995]
 - Allows for more complicated patterns
 - Can test target NP or any constituent in its context for
 - Presence of any word or sequence of words
 - Semantic class of heads or modifiers
- Crystal is a “covering” algorithm
- Successively generalizes the patterns derived from input examples until the generalization produces errors

Supervised Inductive Learning

- **Examples**
 - [features + class]
 - **ML Algorithm**
 - (novel) examples
 - [features]
 - Statistical model
 - Class

Extracting Sources of Opinions

- **Supervised learning**
 - View as a sequence tagging task

<The Washington Post> reported <Blair>’s view on the oil crisis.

Machine Learning of Sources

- **Examples of (Source) NPs in context**
 - [features + class]
 - **ML Algorithm**
 - (novel) NPs in context
 - [features]
 - Statistical model
 - Source?
 - Not Source?
Extracting Sources of Opinions

- **Supervised learning**
 - Sequence tagging
 - HMMs, MEMMs, CRFs

- The Washington Post reported Blair’s view on the oil crisis.

Class Values

- **IOB representation**
 - B – begins an opinion holder phrase
 - I – inside an opinion holder phrase
 - O – outside an opinion holder phrase

Set fill extraction

- If a slot has a fixed set of pre-specified possible fillers, text categorization methods can be used to fill the slot.
 - Job category
 - Company type

- Treat each of the possible values of the slot as a category, and classify the entire document or the sentence to determine the correct filler.