
 1

Base Noun Phrase Chunking with Support Vector Machines

Alex Cheng
CS674: Natural Language Processing – Final Project Report
Cornell University, Ithaca, NY
ac327@cornell.edu

Abstract
We apply Support Vector Machines (SVMs) to identify base noun phrases in sentences.
SVMs are known to achieve high generalization performance even in high dimensional
feature space. We explore two different chunk representations (IOB and open/close
brackets) and use a two-layer system approach for the classification task. Experiments
show that despite using a dynamic programming approach to find the most probable
pairing in the open/close brackets representation, the IOB representation performs
significantly better. In addition, using higher degree polynomial kernel functions lead to
slightly better results. We conclude that SVMs are extremely powerful machine learning
approach for many natural language processing tasks and outperforms other learning
systems because of SVMs’ ability to generalize in high dimension.

1. Introduction
Base noun phrase (baseNP) chunking involves dividing sentences into non-overlapping
segments of noun phrases. Calculating these noun phrase chunks are usually relatively
computationally inexpensive and are often used as a precursor full parsing and further
semantic analysis such as markings in noun-phrase co-reference. In addition, noun
phrase chunks are used as multi-word indexing terms and are important for information
retrieval and information extraction task.

Support Vector Machine (SVM) is a relatively new statistical machine learning approach
for solving binary classification problem. Essentially, SVMs maximize the margin
between critical training examples by solving a dual optimization problem. Kernel
functions allow SVMs to combine the input features at relatively low computational cost
and transform SVMs to non-linear classifiers.

Kudo and Matsumoto (2001) apply SVMs to NP chunking and achieve higher precision
and recall in the standard data set than previously reported. They use a boosting method
of weighted voting between SVMs trained with different chunk representations to
identify noun phrase chunks.

In this paper, we apply SVMs to the NP chunking task, by using different system
architectures from Kudo and Matsumoto. We introduce a two-layer system of SVMs that
iterate in its classification stage until convergence. We examine the effect of higher
degree polynomial kernel function on the chunk task. Moreover, we apply SVMs to a
open/close brackets chunk representation. We analyze the effect of different parameters
used for combining the brackets to find the most probably noun phrase chunks..

 2

1.1 Description Task
The definition of noun phrases can be ambiguous. In this work, we follow the definition
proposed by Ramshaw and Marcus (1995) who develop a method for deriving and
extracting NP chunks from the Penn Treebank. The goal of NP chunking is to identify
the initial portions of non-recursive, non-overlapping noun phrases, including
determiners but excluding postmodifying prepositional phrases or clauses. The bracketed
portions of Figure 1, for example, show the base NPs.

2. Support Vector Machines
SVM is a relatively new machine learning approach based on statistical learning theory.
SVMs are well-known for their good generalization performance and have been applied
to many recognition problems. Recently, SVMs have been applied to natural language
processing tasks such as chunking (Kudo & Matsumoto, 2001) and text classification
(Joachims, 2002). In particular, these two specific NLP systems are reported to have
achieved higher accuracy than most state of the art systems (both learning and
knowledge-based approaches). There are theoretical and empirical results that indicate
the good performance of SVMs’ ability to generalize in a high dimensional feature space
without over-fitting the training data (Joachims, 2002).

2.1 Optimal Hyperplane
Essentially, SVM is a linear classifier for solving binary classification problem. We will
first introduce the linear Hard Margin SVM which operates under the assumption that the
training examples are linearly separable. We then generalize it to a Soft Margin SVM
which we use for our work in NP chunking. We can define the problem as follows:

We are given a training set S containing examples xi, a feature vector of dimension d,
each xi belong either a positive negative class:

),(),...,,(11 nn yxyx dx ℜ∈1 }1,1{1 −+∈y

A Hard Margin SVM seeks to (1) find an optimal separating hyperplane h that classify all
training examples correctly where h = w • x + b and w is the orthogonal vector and b is
the offset from the origin. We can measure the optimality of the hyperplane by the
margin, the minimum distance from h to the training example of both classes. Intuitively,
the a hyperplane h with a larger margin has the highest generalization power. It is not
hard to show that the minimum distance between h and the training example is 1 / ||w||1.

1 (w • x1) + b = 1
 (w • x2) + b = -1

[Pierre Vinken], [61 years old], will join [the board] as [a nonexecutive
director] [Nov. 29].

Figure 1: Base NP Example (sentence extracted from WSJ)

 3

Therefore, by minimizing w, we maximize the margin. So Hard-Margin SVM seeks w
and b such that

 Minimize: ww•
2
1

 Subject to: 1][:1 ≥+•∀ = bxwyi
n
i

Hard Margin SVMs find a hyperplane that separate the training examples with perfect
accuracy. However, a Hard-Margin SVM does not usually work in practice because of
noise in the training data (see Figure 2) or a separating hyperplane may not exist.
Therefore, a Soft Margin SVM allows for such training noise by introducing an error
parameter C. The error for each training example iξ is measured by the distance between
the example and the margin of the example’s class (see Figure 3). So the optimization
problem becomes the following:

Minimize: ∑
=

+•
n

i
iCww

12
1 ξ

 Subject to: ii
n
i bxwy ξ−≥+•∀ = 1][:1 0:1 >∀ = i

n
i ξ

Clearly, as C → ∞ , we have the essentially a Hard-Margin SVM since any error will cost
the minimizing term to approach infinity. So the parameter C controls how much “slack”
we give to the SVM which can be adjusted based on knowledge of the learning task.

For computational reasons, it is easier to solve the Wolfe dual of the optimization
problem. This can be derived using Lagrange multipliers2. This optimization problem
can be solved by quadratic programming.

Ö (w • (x1 – x2)) = 2
Ö (w/ ||w|| • (x1 – x2)) = 2 / ||w|| (this is the min distance between a positive and negative examples)
Ö Margin = 1 / ||w||

2 Details can be find in Scholkopf’s Tutorial on Statistical Learning and Kernel Methods (2000).

ξ

Figure 3: The training error for the example
on the wrong side of the hyperplane.

Figure 2: A Hard Margin SVM
will not perform well

 4

Minimize:)(
2
1

1 11
iiji

n

i

n

j
ji

n

i
i xxyy •+− ∑∑∑

= ==

ααα

 Subject to: ∑
=

=
n

i
iiy

1
0α Ci

n
i ≤≤∀ = α0:1

All training examples with 0>iα are called support vectors. These training examples
define the position of the optimal hyperplane. We can view the iα as the relative
“forces” or weights acting on the hyperplane.

2.2 Kernel Functions
In many classification tasks, the training examples, represented in d dimensional feature
vectors, are distributed such a way that a linear classifier in the current feature space
cannot perform well (see Figure 4). A mapping to a feature space in higher dimension is
sometimes needed to linearly separate the training examples. In the case of artificial
neural networks, the hidden layers increase the expressive power of the learning system.
For SVM, one can introduce kernel functions to map the training examples into a feature
space with higher dimension. Nomrally, a transformation from the original feature space
of the training examples to a higher dimensional feature space is computational
expensive. But notice that in our optimization problem, we are only calculating the dot
products between training examples. Suppose we have a polynomial transformation

': dd ℜ→ℜΦ 'dd < , then normally we will calculate the dot product)'()(xx Φ•Φ .
Now we can introduce a kernel function K such that)'()()',(xxxxK Φ•Φ= . In a
polynomial transformation, dxxxxK)1'()',(+•= . Kernel function allows this
transformation of feature space to a higher dimension with relatively low extra
computational cost.

2.3 Feature Combination with Kernels
Polynomial kernel functions are especially interesting when used for Natural Language
Processing tasks. N-gram can be modeled using kernel functions. Traditionally, if we

x1

x2

x1^2

x2^2

()1,,,,,),()(2121
2

2
2

121 xxxxxxxxx =Φ=Φ
dxxxxxxK)1'()'()()',(+•=Φ•Φ=

Figure 4: Kernel function to map from a linear space to a 2nd degree
polynomial feature space.

Φ

 5

want to model bi-gram in most machine learning approaches, we have to explicitly add
the features wiwj to denote the bigram wiwj. With this increase of feature space, many
machine learning approaches will likely to overfit the training data and loses its
generalization power. Therefore, these features are usually heuristically chosen to avoid
this problem. However, for SVMs, using kernel functions, we can represent n-grams
using an n-degree polynomial kernel function. For example, suppose we have the lexical
features and Part of Speech (POS) features for the noun phrase “The car” with its
corresponding POS “DT” “NN”. Using a 2nd degree kernel functions, the new feature
space consists of all possible pairs: (“The car”, “The DT”, “The NN”, “car DT”, “car
NN”, “DT NN”). The kernel function allows this additional feature to be added to the
learning system with minimal extra computational cost. In addition, the hyperplane
computed by SVM in this new feature space will be optimal and maximizes the margin
between training examples in this feature space. Therefore, SVM does not lose its
generalization power with this transformation.

3. Chunk Representation
Ramshaw and Marcus (1995) have introduced a data representation for chunking by
converting it to a tagging task. Most of the recent work on NP chunking uses this tagging
scheme. Different representations have been proposed, but it has been found that tag
representation has only a minor influence on the performance of the system (Sang, 1999).
For our work, we decide to experiement with two different tag representations, IOB and
open/close brackets which represents the two major classes of chunk representation that
have been used in previous experiments.

3.1 IOB Tag
The chunk set tag {I, O, B} has been originally proposed by Ramshaw and Marcus
(1995). These tags are used to indicate the boundaries for each NP chunk:
I – the current word is inside a NP chunk
O – the current word is outside a NP chunk
B – the current word is the beginning of a chunk which immediately follows another
chunk.

(Figure 5) is an example of using IOB tags to represent NP chunks.

3.2 Open/Close Bracket
Another chunk representation is the open / close brackets. We can also view this as a
tagging task.
[– Denotes the beginning of a chunk
] – Denotes the end of a chunk
. – Denotes everything else that is not a beginning or the end.
Note that a word can be tagged with both [and] if the chunk contains only one word.

(Figure 6) is an example of using open/close brackets to represent NP chunks.

 6

Essentially, both representations are equivalent in terms of expressive power. One can
easily convert from one representation to another. Sang and Veenstra (1999) find that
different representations has minior influence on the performance. Their experiments
consist of using 7 different chunk representation, 4 are variant of the IOB tag, and 3 are
variant of the open/close bracket. Therefore, we decide to use these two classes of chunk
representation for our work.

4. Features
SVMs are binary classifiers; therefore, for multi-class problem such as NP chunking, we
have to extend SVM to a multi-class classifier. There are generally two approaches: a
pairwise method and a one vs. all other method. In the pairwise method, each class is
trained against examples from another class, producing n(n-1)/2 SVMs for an n-class
classification problem. For the IOB tag representations, there will be SVMs trained to
classify (tag I vs. tag O), (tag I vs. tag B) and (tag O vs. tag B). In the one vs. all other
method, exactly n SVMs are trained and each SVM is trained to classify examples of one
label vs. all examples that are not of that same label (for example, tag I vs. not Tag I {Tag
O and Tag B}). As far as we can know, there are currently no theoretical results which
show the advantage of one system over the other. In practice, the pairwise method is
more computational tractable. Despite having polynomially more classifiers to train, the
reduction in training size increases the computation speed of the optimiziation task.
Kudo and Matsumoto (2000) use the pairwise approach for their SVMs for NP chunking.
We decide to use the one vs. all other approach to compare the results of different
approach..

The set for features used for training the SVMs are all the information available in the
surrounding context, such as word, part of speech as well as chunk labels (IOB tags or
open/close brackets) using a window of five:

Word wi-2 wi-1 wi wi+1 wi+2
Capitalize cpi-2 cpi-1 cpi cpi+1 cpi+2
POS pi-2 pi-1 pi pi+1 pi+2
Chunk ci-2 ci-1 ? ci+1 ci+2

Pierre(I) Vinken(I) ,(O) 61(I) years(I)
old(O) ,(O) will(O) join(O) the(I)
board(I) as(O) a(I) nonexecutive(I)

director(I) Nov.(B) 29(I) .(O)

Figure 5: Example of a sentence tagged with IOB notations.

Pierre([) Vinken(]) ,(.) 61([) years(])
old(.) ,(.) will(.) join(.) the([)
board(]) as(.) a ([) nonexecutive(.)

director(]) Nov.([) 29(]) .(.)

Figure 6: Example of a sentence tagged with open/close brackets.

 7

More specifically, for the words, we stem each word using porter stemmer and change
everything to lower case. We added an additional feature for each word to signify if it is
capitalized or not. For the part of speech tags (POS), we use the POS provided in the
Treebank for both the testing and training. The chunk labels of the surround words are
provided during the training phrase. However, during the testing phrase, these tags labels
are not known. Therefore we train two sets of classifiers, one with the chunk label
features and one without and connect the output of one as an input to the other.

5. System Architecture
We develop two systems, one for the IOB tags representation and one for the Open/Close
brackets representation. The main difference between the approaches is that for the
open/close predictor, we have to use dynamic programming to combines the open and
close bracket to form the most probable bracket pairs.

5.1 IOB Tag Predictor
Two predictors are learned, which differ in their input features. The first predictor takes
in the word itself and its POS as well as these information for its surrounding words. The
first predictor outputs the tag prediction for each word. The second predictor takes in the
word and POS information as well as the out of the first predictor as its input feature
vector. Using this second model, the system outputs the predicted tag labels. These tag
labels will then act as input features to the second predictor. This process iterates until
the accuracy of the system converges (see Figure 7).

Features without the IOB tag

SVM classify
Model trained

without Tag info

IOB

SVM classify
Model trained
With Tag info

Features + IOB tag

IOB

Figure 7: Architecture for IOB Predictor

Evaluate Result
Iterate until
Convergence

 8

5.2 Open/Close Brackets Predictor
The system architecture of the open/close brackets predictor is essentially the same as the
IOB Tag predictor except for the combinator. The combinator is necessary because the
two SVMs at each stage classify opposing brackets – one seeks to classify a word as [
another SVM seeks to classify a word as]. These pair of brackets need to consistent and
that number of [must equal the number of]. For each prediction, SVM outputs certainty
score3 and normally, we classify the example to be in class +1 if the certainty score is
greater than 0 and -1 if it is less than 0. If we simply use this approach, many of the
bracket pairs will be overlapping, which does not form NP chunks and that the number of
brackets will certainly not be the same for open and close brackets. Therefore we need to
use the combinator to find the most probable bracket pair. (see Figure 8)

5.2.1 Combinator
The combinator proposed here is similar to the one used in SNoW, (Spare Network of
linear separator) which is a learning approach for shallow parsing (Munoz et al. 1999).
SVM outputs a certainty value for the classification of each example. We use this
certainty value to maximize the most probable bracket pairs.

For each example classified by the SVM let vo(i) be denote the certainty score output by
the open bracket classifier for example i and vc(i) be the certainity score by the close
bracket classifier We call p = (i,j) a pair where i is the position of the open bracket and j
is the position of the close bracket and that i <= j. Note that i = j if the chunk consist of
only one word. Then we define v(p) = vo(i)*vc(j). Two pairs (i,j) and (i',j') are

3 Certainty score = w•x + b for a linear SVM

Features without the []

SVM classify
Model trained

without []

SVM classify
Model trained
With [] info

Features + []

[]

[]

Combinator

Combinator

Figure 8: Architecture for Open/Close Predictor

 9

compatible if j > i'. Then for each sentence s, we want to maximize the set of compatible
pairs P such that the sum of all the values is the maximum. Since the number of possible
pairs in a sentence of size m = |s| is m!, we introduce a threshold t to reduce the number
of candidate pair consider in the problem. More precisely, we set vk(i)’ = vk(i) + t and we
only consider brackets in which vk(i)’ > 0 k ∈ {o,c}. Then the v(p)’ = vo(i)’ * vc(j) > 0
for all possible pair. In addition, we introduce a distance parameter d. We find
empirically that some of chunks p = (i,j) consist of too many words because
v(p) > ∑ v(p’), for some p’=(i',j') i < i' and j > j'. Thus, this parameter d adds value
to v(p) depending on the distance between the open bracket and the close bracket. More
precisely, v(p = (i,j)) = vo(i)* vc(j) + d / (j-i+1).
Given this formulation, we can extract a list of possible candidates with their value. We
can then use a standard dynamic programming approach4 to find the optimal set of
pairings for each sentence s.

6 Experiment and Results
For our experiments, we use the software package SVM-light (Joachims 2000). We vary
the kernel functions (2nd degree polynomial vs. 3rd degree polynomial) and keep the cost
parameter C constant (1). We use the standard dataset proposed originally by Ramshaw
and Marcus (1995). The training data consists of 4 sections (15-18) of the WSJ part of
the Penn Tree bank. The test data consists of one section (20). The size of the training
and test data are summarized in Table 1.

6.1 Experiment Setting
Experiment 1: For the baseline system, we use the part of speech information only. For
each word, we assign the chunk tag that is most frequently associated with that part of
speech tag in training.

Experiment 2: This is the first predictor of the IOB system using 2nd degree polynomial
with no tag info as features.

Experiment 3: This is the first predictor of the IOB system using 3rd degree polynomial
with no tag info as features.

Experiment 4: This is the second predictor of the IOB system using 2nd degree
polynomial with surrounding tag info as features. The tag info is the result from the first
predictor (Experiment 2).

4 This problem is equivalent to the Weighted Interval Scheduling Problem see
(www.cs.cornell.edu/courses/cs482/), which can be solved in O(n) time where n is the number of candidate
pairs.

Data Sentences Words NP Patterns
Training (WSJ 15-18) 8936 211727 54758
Testing (WSJ 20) 2012 47377 12335

Table 1: Sizes of the training and test data sets (Munoz et al. 1999)

 10

Experiment 5: This is the second predictor of the IOB system using 3rd degree polynomial
with surrounding tag info as features. The tag info is the result from the first predictor
(Experiment 3).

Experiment 6: This is the first predictor for the open/close bracket system using 2nd
degree polynomial with no tag info as features. We experiment with different parameters
of threshold t and distance value d to find the best result for the combinator.

Experiment 7: This is the second predictor for the open/close bracket system using 2nd
degree polynomial with surrounding tag info as features. The tag info is the result of best
(highest Fβ = 1) bracket pairs found by the first predictor going through the combinator
and best parameters selection (Experiment 6).

6.2 Evaluation
An evaluation script5 has been provided by Erik Sang for CoNNL-2000. This script uses
the IOB tag representation and measures precision (percentage of chunks found that are
correct), recall (percentage of correct chunks found) and F-measure [β = 1]
(2*precision*recall / (precision + recall). Both ends of a chunk have to match exactly for
it to be counted. For the open/close bracket system, we convert the brackets into IOB
tags, and feed this converted representation into the evaluation script. Since the two
representations are equivalent in expressive power, performance is not affected by the
conversion. We have achieved an F-measure of 94.14% which is slightly worse than the
state of the art system (94.22% Kudo and Matsumoto, 2001)

Results are summarized in Table 2.

6.3 Effect of Chunk Representation
We find that the IOB representation performs significantly better than the open/close
bracket representation. We speculate that with the IOB representation, we use three
SVMs to classify each tag, whereas for the open/close bracket representation, we have
two SVMs to classify the open and close bracket. It seems that the increase number of
SVMs simplify the learning problem. Each additional class reduces the number of
positive examples for each SVM, thereby making the data easier to separate. Thus, the
number of support vectors decreases as the number of class increases, reducing the
complexity of the hypothesis space.

One of the major problems with the Open/Close system is that for the second predictor,
we use the best overall output from the first predictor. However, the best set of pairings
result from the first predictor using some paramenters t,d might not be the best input for
the second predictor. Therefore, the performance results from the Open/Close system is
not as good as the IOB system.

5 http://cnts.uia.ac.be/conll2000/chunking/conlleval.txt

 11

6.3.1 Parameters for the Combinator
The threshold parameters t and distance parameters d directly affects the precision and
recall of the system (see Appendix A). In particular, decreasing the parameter t improves
the precision of the system, but the performance for recall drops. This is intuitive
because the decrease of threshold t means that fewer candidates are considered and that
the system is more certain of the correctness of the classification. However, many
possible candidates are missed as a result and therefore recall rate drops. The precision
and recall of the system seems to be directly correlated with the value of the threshold t.

The distance parameter d varies the bias for shorter chunks (chunks containing fewer
words). The larger the parameter d, the more the system is biased towards shorter
chunks. This is interesting because as we considered more candidates (threshold t is
small), the precision of the system increases as d increases. This probably allows the
system to eliminate many possible long chunks that could lead to poor performance.
However, as the threshold t increase, the increase of d leads to poor performance. The
distance parameter does not seem to have any significant effect on the recall rate.

6.4 Effect of different Kernel Functions
For our experiments, due to time constraints, we only train our system with a 2nd and 3rd
degree polynomial kernel function. We find that the 3rd degree polynomial kernel
function perform slightly better. One of the reasons is that by using the 3rd degree
polynomial kernel, we can model tri-grams as our features, which increases the power of
the learning system.

Ex. System Precision Recall Fβ = 1
1 Baseline 78.2% 81.9% 80.01%
2 IOB (no tag) degree-2 93.50% 93.91% 93.70%
3 IOB (no tag) degree-3 93.43% 93.74% 93.58%
4a IOB (tag) degree-2 (first iteration) 93.94% 94.03% 93.99%
4b IOB (tag) degree-2 (converged) 94.06% 94.07% 94.07%
5a IOB (tag) degree-3 (first iteration) 94.05% 94.06% 94.06%
5b IOB (tag) degree-3 (converged) 94.14% 94.13% 94.14%
6a Open/Close (no tag) d-2 (best precision)

Parameter t = 0, d = 4.8
94.90% 90.97% 92.89%

6b Open/Close (no tag) d-2 (best recall)
Parameter t = 1.0, d = 0.8

90.82% 93.16% 91.97%

6c Open/Close (no tag) d-2 (best F-measure)
Parameter t = 0.25, d = 4.8

94.07% 92.03% 93.04%

7a Open/Close (no tag) d-2 (best precision)
Parameter t = 0, d = 4.8

94.65% 91.14% 92.86%

7b Open/Close (no tag) d-2 (best recall)
Parameter t = 1.0, d = 1.2

92.92% 93.70% 93.31%

7c Open/Close (no tag) d-2 (best F-measure)
Parameter t = 0.75, d = 2.0

93.49% 93.17% 93.33%

Table 2: Result of the seven experiments (the best result in each category is in bold)

 12

We find that in our iterative approach, the system converges relatively quickly. After an
average of four passes, there are no longer changes in precision or recall of the system.
This iterative approach performs better than the any of the system trained for using a
single chunk representation. The best result thus far is the SVM approach by Kudo and
Tatsumoto (2001), and the best F-measure for the a single chunk presentation is 94.11%
and our system achieve a slightly better result of 94.14%.

7. Related Work
The approach to view chunking as a tagging problem by encoding the chunk structure in
tags attached to each word is first proposed by Ramshaw and Marcus (1995). They put
forward a standard dataset for this chunking task and derive a simple algorithm for
extracting base noun phrase from the Penn Tree bank. They apply a transformation based
learning to chunking by tagging the text, using similar techniques from Brill’s Part of
Speech tagger and hows that baseNP recognition (F(beta = 1) = 92.0) is easier than
finindg both NP and VP chunks and that increasing the size of the training data increases
the performance on the test set.

Other memory based sequence learning approach has been proposed. In one particular
system, Cardie and Pierce (1998) use a method that uses only POS tag sequence to form
complete baseNPs achieve a surprisingly good performance (F(beta = 1) = 90.9) without
any lexical information.

Munoz et al (1999) develop a learning system (SNoW) which uses a sparse network of
linear functions over a predefined or incrementally learned feature space. The two goals
of their research are to examine the contribution of chaining – outputs from one of the
predictors are used as input features of another predictor, and to compare between the
Inside/Outside (IOB) and the Open/Close approach. They show that the Open/Close
approach performs better than the Inside/Outside one. Their systems achieve an F-
measure of 92.8%. In particular, for the Open/Close approach, the lexical information
along with the use of the output feature of the first predictor has significant effect on the
performance of the system.

Kudo and Matsumoto (2001) apply SVM to NP chunking. They use 4 different chunk
representations and used a voting scheme to classify the chunk. Instead of using a two-
layer system, they incorporate a parsing method for their SVM classification.
Specifically, in a forward parsing direction, the chunk label of the previous two words are
used as input features for the classification of the current tag. Thus they have 8 systems
in total – 4 different chunk representations and 2 parsing direction. They then compared
different voting methods: uniform, Cross validation,VC Bound and leave one out error.
They find that the VC Bound is the best predictor for the performance of the system.
Their system achieve the best result thus far, a F-measure of 94.22%.

8. Future Work and Concluding Remarks
We have trained two different learning systems for the NP chunking task using two
different representations and found that the IOB representation performs significantly
better than the open/close brackets representation. However, the differences in the kernel

 13

functions do not perform significantly better. The parameters for the combinator can
adjust the precision and recall power of the system.

One disadvantage of a two-pass system is that the computational cost for training and
classification is high, especially with SVM in a high dimensional feature space. This
prohibits the use of SVM from many of the real-time application such as information
retrieval.

8.1 Future Work

• Adding a bag of words approach to as a feature to the SVM. We can then use the
context of the whole sentence, with an increase in windows size independent of
the ordering.

• For the open/close bracketing approach, one can find a more robust way of
selecting the parameters. In particular, tuning the parameter can lead to better
performance in either precision or recall. We can use the result from these
different predictors as input features to the second predictor. We believe this
approach will allow the system to perform as well, if not better than the IOB
representation.

• We can incorporate a boosting method by using a weighted voting between the
IOB system and the open/close system.

• One reason why IOB representations perform better is that three classifiers are
trained to determine the tag as opposed to two in the open/close bracket
representation. We can try using a tag representation with more than three
different tags and see if SVM performs better.

 14

Reference

Claire Cardie and David Pierce. 1998. Error-Driven Pruning of Treebank Grammars for
Base Noun Phrase Identification. In Proceedings of COLING-ACL'98, pages 218-224

Thorsten Jaochims. 2000 SVM-light version 5.0 http://svmlight.joachims.org/

Thorsten Joachims. 2002. Learning to classify text using support vector machines –
methods, theory, and algorithms. Kluwer.

Taku Kudo and Yuji Matsumoto. 2000. Use of Support Vector Learning for Chunk
Identification. In Proceedings of the 4th Conference on CoNLL-2000 and LLL-2000,
pages 142-144.

Taku Kudo and Yuji Matsumoto. 2001. Chunking with Support Vector Machines. In
Proceedings of the NAACL 2001, pages 192-199.

Marcia Muñoz, Vasin Punyakanok, Dan Roth and Dav Zimak. 1999 A Learning
Approach to Shallow Parsing, In Proceedings of EMNLP/WVLC-99, pages 67-73

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text chunking using transformation-
based learning. In Proceedings of the 3rd Workshop on Very Large Corpus, pages 88-94.

Erik F. Tjong Kim Sang and John Veenstra. 1999. Representing text chunks. In
Proceedings of EACL 1999, pages 173-179.

Bernhard Scholkopf. 2000. Statistical Learning and Kernel Methods. Technical Report
MSR-TR-2000-23

 15

Appendix A
Open/Close Bracket Predictors: results using different parameters t, d.

Precision

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0 0.4 0.8 1.2 1.6 2 2.5 3 3.5 4 4.5

Distance Parmater (d)

%

Threshold = 0

Threshold = 0.25

Threshold = 0.5

Threshold = 0.75

Threshold = 1

Recall

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.3 2.5 2.8 3 3.3 3.5 3.8 4 4.3 4.5 4.8

Distance Parmater (d)

%

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75
Threshold = 1

 16

F(β = 1)

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.3 2.5 2.8 3 3.3 3.5 3.8 4 4.3 4.5 4.8

Distance Parmater (d)

%

Threshold = 0
Threshold = 0.25
Threshold = 0.5
Threshold = 0.75
Threshold = 1

