Today: Pragmatics and the problem of inference

- Text coherence
- Scripts for text understanding

Pragmatics
Understanding sentences in context.

<table>
<thead>
<tr>
<th>Analysis:</th>
<th>Hearer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(parsing):</td>
<td></td>
</tr>
<tr>
<td>NP</td>
<td>VP</td>
</tr>
<tr>
<td>article noun</td>
<td>verb</td>
</tr>
<tr>
<td>The students are</td>
<td>dead</td>
</tr>
<tr>
<td>(semantic interpretation):</td>
<td></td>
</tr>
<tr>
<td>Tired (Students)</td>
<td></td>
</tr>
<tr>
<td>not (Alive (Students))</td>
<td></td>
</tr>
<tr>
<td>(pragmatic interpretation):</td>
<td></td>
</tr>
<tr>
<td>Tired (Students,S3)</td>
<td></td>
</tr>
<tr>
<td>not (Alive (Students,S3))</td>
<td></td>
</tr>
</tbody>
</table>

Interpretation in Context

Jack took out a match. He lit a candle.

Jack took out a match. The sun set.

Useful to divide context into:

- **discourse context:** information from preceding sentences
- **situational context:** relevant world knowledge

The Problem of Inference

When the balloon touched the light bulb, it broke. This made the baby cry. Mary gave John a dirty look and picked up the baby. John shrugged and picked up the balloon.
NLU as Abduction

If A → B is true and B true, then A true.

\[X = \text{Fred desperately needed money for the mortgage payment.} \]

\[B = \text{Fred called his sister.} \]

Rule 1 = If you need money then you can get it from a family member.

Rule 2 = If you want to get something from someone, then you can ask them for it.

Rule 3 = One way to ask someone for something is to call them.

Framework for Using World Knowledge

Expectation-Based Processing

1. Assume setting of discourse is represented by content of previous sentences and any inferences made when interpreting those sentences.

2. Use this information to generate a set of expectations about plausible eventualities.

3. Match possible interpretations of new sentences against expectations generated from the previous discourse.

Knowledge About Action and Causality

Forms of Causality:

-[**effect causality**] Set of intended effects or side effects typically caused by an action.

-[**precondition causality**] Set of conditions that typically must hold just before action starts.

-[**enablement**] A enables B if the effects of the first establish the preconditions of the second.

-[**decomposition**] A is a substep of B if A is one of a sequence of steps that constitute the execution of B.

Definition of BUY

Roles: Buyer, Seller, Object, Money

Constraints: Human(Buyer), SalesAgent(Seller), IsObject(Object), Value(Money, Price(Object))

Preconditions: AT(Buyer, Loc(Seller)), OWNS(Buyer, Money), OWNS(Seller, Object)

Effects: ¬OWNS(Buyer, Money), ¬OWNS(Seller, Object), OWNS(Buyer, Object), OWNS(Seller, Money)

Decomposition: GIVE(Buyer, Seller, Money), GIVE(Seller, Buyer, Object)
Scripts [Schank & Abelson]

- Prepackaged chain of causal relations between events and states that encodes expectations.
- Don’t have to generate expectations from first principles using causality reasoning.
- Knowledge structure that encodes stereotypical sequences of events.

John was hungry. He went into Schneider’s and ordered a pastrami sandwich. It was served to him quickly. He left the server a large tip.

$RESTAURANT$ Script

Roles: Customer(S), Server(W), Cook(C), Cashier(M), Food(F)

Props: Table, Utensils, etc.

Constraints: HUMAN(S), HUMAN(W), etc.

Preconditions: HAS-MONEY(S)

Effects:

- HAS-LESS-MONEY(S), HAS-MORE-MONEY(M),
- ¬HUNGRY(S), ¬PLEASED(S)

Decomposition (Conceptual Dependency form):

1. **Enter:** S PTRANS S into Restaurant; S ATTEND Eyes to Tables; S MBUILD where to sit; S PTRANS S to Table; S MOVE S to sitting position.
2. **Order:** S MTRANS food-order to W (main)
3. **Eat:** S INGEST X (main)
4. **Exit:** S ATRANS money to M (main)

Using Scripts to Understand a Story

Assume: script S, consisting of events e_1, e_2, \ldots

For each sentence, s in text:

1. Parse s into its propositional CD form.
2. While event, e, in list of script events:

 (a) If s matches e,

 i. Instantiate e with current script roles.

 ii. Instantiate all intervening events, i, with current script roles.

 (b) Else move pointer to next event, saving e in i.

Output is instantiated script.
Problems with Scripts

1. Script selection
2. Managing multiple scripts
3. Aborting scripts
 * John went to Schneider’s. He left.
4. Allowing for optional paths through scripts
 * John was pick-pocketed on the way to restaurant.
5. Knowledge engineering requirements

Novel Situations

* John was hungry. He took out some ground beef.

* John was hungry. He took out the Yellow Pages.

* John needed money for the mortgage payment. He called his sister.

* John needed money for the mortgage payment. He got a gun.