Why is NLP such a difficult problem?

Ambiguity!!!! …at all levels of analysis 😊

- Phonetics and phonology
 - Concerns how words are related to the sounds that realize them
 - Important for speech-based systems.
 - “I scream” vs. “ice cream”
 - “nominal egg”
 - Moral is:
 - It’s very hard to recognize speech.
 - It’s very hard to wreck a nice beach.
- Morphology
 - Concerns how words are constructed from sub-word units
 - Unionized
 - un-ionized in chemistry?

Topics for Today

- Why is NLP a challenging area of research?
- Brief history of NLP
- Writing critiques
Why is NLP such a difficult problem?

Ambiguity!!!! …at all levels of analysis 😐

- **Semantics**
 - Concerns what words mean and how these meanings combine to form sentence meanings.
 - Jack invited Mary to the Halloween **ball**.
 - Dance vs. some big sphere with Halloween decorations?
 - Visiting relatives can be trying.
 - Visiting museums can be trying.
 - Same set of possible syntactic structures for this sentence
 - But the meaning of **museums** makes only one of them plausible.

- **Discourse**
 - Concerns how the immediately preceding sentences affect the interpretation of the next sentence.
 - Merck & Co. formed a joint venture with Ache Group, of Brazil. It will be called Prodome Ltd.
 - Merck & Co. formed a joint venture with Ache Group, of Brazil. It will own 50% of the new company to be called Prodome Ltd.
 - Merck & Co. formed a joint venture with Ache Group, of Brazil. It had previously teamed up with Merck in two unsuccessful pharmaceutical ventures.

- **Pragmatics**
 - Concerns how sentences are used in different situations and how use affects the interpretation of the sentence.
 - "I just came from New York."
 - Would you like to go to New York today?
 - Would you like to go to Boston today?
 - Why do you seem so out of it?
 - Boy, you look tired.

Early Roots: 1940’s and 1950’s

- **Work on two foundational paradigms**
 - **Automaton**
 - Turing’s (1936) model of algorithmic computation
 - Kleene’s (1951, 1956) finite automata and regular expressions
 - Shannon (1948) applied probabilistic models of discrete Markov processes to automata for language
 - Chomsky (1956)
 - First considered finite-state machines as a way to characterize a grammar
 - Led to the field of formal language theory
Early Roots: 1940’s and 1950’s

- Work on two foundational paradigms
 - Probabilistic or information-theoretic models for speech and language processing
 - Shannon: the “noisy channel” model
 - Shannon: borrowing of “entropy” from thermodynamics to measure the information content of a language

Two Camps: 1957-1970

- Symbolic paradigm
 - Chomsky
 - Formal language theory, generative syntax, parsing
 - Linguists and computer scientists
 - Earliest complete parsing systems
 - Zelig Harris, UPenn
 - …A possible critique reading!!

- Stochastic paradigm
 - Took hold in statistics and EE
 - Late 50’s: applied Bayesian methods to OCR
 - Mosteller and Wallace (1964): applied Bayesian methods to the problem of authorship attribution for The Federalist papers.

Two Camps: 1957-1970

- Artificial intelligence
 - Created in the summer of 1956
 - Two-month workshop at Dartmouth
 - Focus of the field initially was the work on reasoning and logic (Newell and Simon)
 - Early natural language systems were built
 - Worked in a single domain
 - Used pattern matching and keyword search

…A possible critique reading!!
Additional Developments

1960’s
- First serious testable psychological models of human language processing
 » Based on transformational grammar
- First on-line corpora
 » The Brown corpus of American English
 ◆ 1 million word collection
 ◆ Samples from 500 written texts
 ◆ Different genres (news, novels, non-fiction, academic,....)
 ◆ Assembled at Brown University (1963-64, Kucera and Francis)
 » William Wang’s (1967) DOC (Dictionary on Computer)
 ◆ On-line Chinese dialect dictionary

1970-1983

Explosion of research
- Stochastic paradigm
 » Developed speech recognition algorithms
 ◆ HMM’s
 ◆ Developed independently by Jelinek et al. at IBM and Baker at CMU
- Logic-based paradigm
 » Prolog, definite-clause grammars (Pereira and Warren, 1980)
 » Functional grammar (Kay, 1979) and LFG

1970-1983

- Natural language understanding
 » SHRDLU (Winograd, 1972)
 » The Yale School
 ◆ Focused on human conceptual knowledge and memory organization
 » Logic-based LUNAR question-answering system (Woods, 1973)
- Discourse modeling paradigm

1983-1993

- Finite-state models
 » Phonology and morphology (Kaplan and Kay, 1981)
 » Syntax (Church, 1980)
- Return of empiricism
 » Rise of probabilistic models in speech and language processing
 » Largely influenced by work in speech recognition at IBM
- Considerable work on natural language generation
A Reunion of a Sort…

- 1994-1999
 - Probabilistic and data-driven models had become quite standard
 - Increases in speed and memory of computers allowed commercial exploitation of speech and language processing
 » Spelling and grammar checking
 - Rise of the Web emphasized the need for language-based information retrieval and information extraction

Statistical and Machine Learning Approaches Rule!

- 1992 ACL
 - 24% (8/34)
- 1994 ACL
 - 35% (14/40)
- 1996 ACL
 - 39% (16/41)
- 1999 ACL
 - 60% (41/69)
- 2001 NAACL
 - 87% (27/31)

Empirical Evaluation

- 1992 ACL
- 1994 ACL
- 1996 ACL
- 1999 ACL
- 2001 NAACL

WVLC and EMNLP Conferences

- Workshop on Very Large Corpora
- Conference on Empirical Methods in NLP
Critique Guidelines

- <=1 page, typed (single space)
- The purpose of a critique is not to summarize the paper; rather you should choose one or two points about the work that you found interesting.
- Examples of questions that you might address are:
 - What are the strengths and limitations of its approach?
 - Is the evaluation fair? Does it achieve it support the stated goals of the paper?
 - Does the method described seem mature enough to use in real applications? Why or why not? What applications seem particularly amenable to this approach?
 - What good ideas does the problem formulation, the solution, the approach or the research method contain that could be applied elsewhere?
 - What would be good follow-on projects and why?

- Are the paper's underlying assumptions valid?
- Did the paper provide a clear enough and detailed enough description of the proposed methods for you to be able to implement them? If not, where is additional clarification or detail needed?

- Avoid unsupported value judgments, like "I liked..." or "I disagreed with..." If you make judgments of this sort, explain why you liked or disagreed with the point you describe.
- Be sure to distinguish comments about the writing of the paper from comment about the technical content of the work.