Today's Papers

  - Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne, Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker, Jeremiah Crim

  - Dan Klein and Christopher D. Manning

Co-training

- Idea: multiple classifiers (parsers) train each other
- Assumes parsers use independent models
- During each co-training iteration:
  - Select a small cache of unlabeled sentences
  - Run parsers A and B on the cache
  - Score each parse output from each parser
  - Select some of A's parses to add to the training set of B, select some of B's parses to add to the training set of A
  - Retrain both A and B
- Corrected co-training: human checks & corrects parser output before it is added to training set

Co-training (2)

- Problem 1: How do we score output of parser?
- Problem 2: How do we do sample selection?
  - Intuitively, we should use only accurate output
  - But also choose examples with high training utility
- This paper: Sample selection for co-training
  - Opposing goals: want training samples to have both high training utility and high accuracy

Scoring & selecting training examples

- Parse scoring
  - Optimal: comparison to human-labeled ground truth
  - Practical: likelihood of parse given model
- Training example selection
  - Above-n: \((\text{score of teacher's parse}) \geq n\)
  - Difference: \((\text{score of teacher's parse}) - (\text{score of student's parse}) \geq n\)
  - Intersection: \((\text{high-quality, high-utility samples})\)
    - \((\text{score of teacher's parse in highest n percentile}) \text{ and } (\text{score of student's parse in lowest n percentile})\)
Experimental protocol

- Two parsers
  - Lexicalized context free grammar parser [Collins99]
  - Lexicalized tree adjoining grammar parser [Sarkar02]
- Seed (labelled) training data: 1,000 sentences
- Unlabelled training data: ~38,000 sentences
- Cache size: 500 sentences
- Test data: independent, ~2,400 sentences

Results, ideal scoring function

- “Relaxed” (~85% accuracy)
- “Strict” (~95% accuracy)

- Conclusion: utility is more important than accuracy
- But:
  - Statistical significance (e.g. error bars)?
  - What about other values of n?

Results, practical scoring function

- ~1 percentage point gain using diff-30% or int-30%
- Again, utility more important than accuracy

Corrected co-training, ideal scoring

- Intersection (n=30%) may be best choice based on growth rate (need more data to confirm)

Statistically significant?

Bad choice: requires more human effort than supervised learning
Corrected co-training, practical scoring

- Corrected co-training still saves human effort
- Again, utility is more important than accuracy (assuming results are statistically significant)

Conclusions

- Selection methods emphasizing high training utility do best, even at the expense of lower accuracy
- Quality of scoring function important
  - For ideal scoring function, co-training significantly improved parser performance (2-3 percentage points)
  - For practical scoring function, co-training improved performance only marginally (< 1 percentage point)
    (so better scoring functions are needed...)
- Corrected co-training with high training utility selection further increases performance, with less human effort than a supervised method
- Future work: try other pairs (sets) of parsers

Today's Papers

  - Mark Steedman, Rebecca Hwa, Stephen Clark, Miles Osborne, Anoop Sarkar, Julia Hockenmaier, Paul Ruhlen, Steven Baker, Jeremiah Crim

  - Dan Klein and Christopher D. Manning

Paper by Klein & Manning

- Idea: build a grammar by observing the hand-labelled parses of the Penn treebank
- But: this can create huge grammars
  - [Charniak96] found 10,605 rules on the Penn treebank, and less than 40% of those occurred more than once
- How fast (slow) are chart parsers that use these grammars?
- Which parameters affect parsing speed and memory use? How can we model these effects?
Parameters (1)

• Tree transforms
  - None, NoEmpties, NoUnaries

Background: chart parsers (1)

- C categories, S states in the grammar DFA
- Chart: nodes and edges
- Node: placed between each word of sentence
  - (so n+1 nodes for a sentence with n words)
- Span: range of words (e.g. [0,2] refers to *The old* )
  - (there are \( O(n^2) \) possible spans)

Parameters (2)

• Grammar encoding
  - List, trie, or minimized DFA
  - All encodings equivalent (do not affect parser output)

Background: chart parsers (2)

- Edge: associates a category with a span (e.g. N:([1,2])
  - Passive edge: e.g. ART:[0,1]
    - Means the span belongs to the category
    - There are \( O(Cn^2) \) possible passive edges (~2% of edges)
  - Active edge: e.g. NP -> ART : N:[0,1]
    - Means that if we find some node k such that [1,k] is a noun, then [0,k] is a noun phrase
    - There are \( O(Sn^2) \) possible active edges (~98% of edges)
Background: chart parsers (3)

- Saturation of a span: # of edges over that span
- Traversal: combining an active edge and a passive edge to form a new edge
  - e.g. (NP -> ART . N:[0,1] + Noun:[1,2]) => NP:[0,2]
  - # of traversals bounded by $O(SCn^3)$
- Computation cost proportional to number of traversals
- Memory use proportional to number of active edges [$O(Sn^2)$]

Results: parsing time

- Fit power law model $y=Ax^B$ to data
- Some exponents > 3 (asymptotic worst case)
- Execution time affected by Java garbage collection
  - Traversal count a better measure of execution time

Results: traversal counts

- Simpler grammars (more aggressive tree transforms) produce faster parsers
  - But affect utility of parses
- Fewer states (more aggressive state reduction) in grammar encoding produce faster parsers
Results: top-down vs. bottom-up

- Top-down parsing slightly more efficient

Modeling passive edge count

\[ p_{\text{tot}}(n) = \sum_{i=0}^{n}(n + 1 - i)psat_i \]

- Find empirically that \( psat_i \) for \( i \geq 2 \) is relatively constant, so this sum can be approximated as (for NoTransform and NoEmpties):

\[ p_{\text{tot}}(n) = \frac{(n-1)n}{2}psat_2 + (n)psat_1 + (n + 1)psat_0 \]

Modeling active edge count

- Assume a random tag matches a random word with some fixed probability \( p \)
- We can characterize an active state by the number of tags \( t \) and categories \( c \) that must be matched
  - For an active state \( a \), \( \sigma(a) = (t,c) \) is its signature
- Approximate active edge count by summing over signatures:

\[ asat(n) = \sum_{\sigma} \text{count}()E_{a \in \sigma}[P(\text{match}(a, n))] \]

- \( \text{avg} \) # of active edges for a span of length \( n \)
- # of active states having signature \( \sigma \)
- Expected probability that a random rule of signature \( \sigma \) will match a random span of length \( n \)

- \( \text{count} \) and \( p \) are parameters estimated from treebank

Modeling traversal count

- Predict traversals from passive and active edge models
- Assume that a given active edge and a given passive edge can be combined into a traversal with the following fixed probability:

- Avg outgoing degree of FSA
  - \# of labels (categories or POS tags)
  - 1 for lists
  - ~3.7 for tries
  - ~4.2 for min. FSAs
  - 73
Traversals counts: observed vs. modeled

Conclusions

- Simple models can be built to predict parse time, memory requirements
- Ordering (top-down or bottom-up) has little effect on performance
- Choice of grammar encoding has greatest effect on parser
  - This is good, since choice of tree transform is highly application-sensitive