Word sense disambiguation

- Given a *fixed* set of senses is associated with a lexical item, determine which of them applies to a particular instance of the lexical item
- Two fundamental approaches
 - WSD occurs during semantic analysis as a side-effect of the elimination of ill-formed semantic representations
 - Stand-alone approach
 - WSD is performed independent of, and prior to, compositional semantic analysis
 - Makes minimal assumptions about what information will be available from other NLP processes
 - Applicable in large-scale practical applications

Machine learning approaches

- Machine learning methods
 - Supervised inductive learning
 - Bootstrapping
 - Unsupervised
- Emphasis is on acquiring the knowledge needed for the task from data, rather than from human analysts.

Inductive ML framework

- Examples of task (features + class) → ML Algorithm → correct word sense
- Novel example (features) → Classifier (program) → class
- Learn one such classifier for each lexeme to be disambiguated
Running example

An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

1. Fish sense
2. Musical sense
3. ...

Feature vector representation

- **target**: the word to be disambiguated
- **context**: portion of the surrounding text
 - Select a “window” size
 - Tagged with part-of-speech information
 - Stemming or morphological processing
 - Possibly some partial parsing
- Convert the context (and target) into a set of features
 - Attribute-value pairs
 - Numeric or nominal values

Collocational features

- Encode information about the lexical inhabitants of specific positions located to the left or right of the target word.
 - E.g. the word, its root form, its part-of-speech
 - An electric guitar and bass player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

 - [guitar, NN1, and, CJC, player, NN1, stand, VVB]

Co-occurrence features

- Encodes information about neighboring words, ignoring exact positions.
 - **Features**: the words themselves (or their roots)
 - **Values**: number of times the word occurs in a region surrounding the target word
 - Select a small number of frequently used content words for use as features
 - 12 most frequent content words from a collection of bass sentences drawn from the WSJ: fishing, big, sound, player, fly, rod, pound, double, runs, playing, guitar, band
 - Co-occurrence vector (window of size 10) for the previous example:
 \[0,0,0,1,0,0,0,0,0,1,0]\]
Naïve Bayes classifiers for WSD

- Assumption: choosing the best sense for an input vector amounts to choosing the most probable sense for that vector
 \[\hat{s} = \arg\max_{s \in S} P(s \mid V) \]
 - \(S \) denotes the set of senses
 - \(V \) is the context vector

- Apply Bayes rule:
 \[\hat{s} = \arg\max_{s \in S} \frac{P(V \mid s)P(s)}{P(V)} \]

Estimate \(P(V \mid s) \):

- Mooney (1996) reports on line corpus that naïve-Bayes and an ANN worked best, achieving 73% correct.

WSD Evaluation

- Corpora:
 - line corpus
 - Yarowsky’s 1995 corpus
 » 12 words (plant, space, bass, …)
 » ~4000 instances of each
 - Ng and Lee (1996)
 » 121 nouns, 70 verbs (most frequently occurring/ambiguous); WordNet senses
 » 192,800 occurrences
 - SEMCOR (Landes et al. 1998)
 » Portion of the Brown corpus tagged with WordNet senses
 - SENSEVAL (Kilgarriff and Rosenzweig, 2000)
 » Annual performance evaluation conference
 » Provides an evaluation framework (Kilgarriff and Palmer, 2000)

- Baseline: most frequent sense

WSD Evaluation

- Metrics
 - Precision
 » Nature of the senses used has a huge effect on the results
 » E.g. results using coarse distinctions cannot easily be compared to results based on finer-grained word senses
 - Partial credit
 » Worse to confuse musical sense of bass with a fish sense than with another musical sense
 » Exact-sense match \(\rightarrow \) full credit
 » Select the correct broad sense \(\rightarrow \) partial credit
 » Scheme depends on the organization of senses being used
Decision list classifiers

- Decision lists: equivalent to simple case statements.
 - Classifier consists of a sequence of tests to be applied to each input example/vector; returns a word sense.
- Continue only until the first applicable test.
- Default test returns the majority sense.

Decision list example

- Binary decision: fish *bass* vs. musical *bass*

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish within window</td>
<td>bass1</td>
</tr>
<tr>
<td>striped bass</td>
<td>bass1</td>
</tr>
<tr>
<td>guitar within window</td>
<td>bass2</td>
</tr>
<tr>
<td>bass player</td>
<td>bass2</td>
</tr>
<tr>
<td>piano within window</td>
<td>bass2</td>
</tr>
<tr>
<td>tenor within window</td>
<td>bass2</td>
</tr>
<tr>
<td>sax bass</td>
<td>bass1</td>
</tr>
<tr>
<td>play'N bass</td>
<td>bass1</td>
</tr>
<tr>
<td>river within window</td>
<td>bass1</td>
</tr>
<tr>
<td>violin within window</td>
<td>bass2</td>
</tr>
<tr>
<td>salmon within window</td>
<td>bass1</td>
</tr>
<tr>
<td>on bass</td>
<td>bass2</td>
</tr>
<tr>
<td>bass are</td>
<td>bass1</td>
</tr>
</tbody>
</table>

Learning decision lists

- Consists of *generating* and *ordering* individual tests based on the characteristics of the training data
- **Generation**: every feature-value pair constitutes a test
- **Ordering**: based on accuracy on the training set

\[
\text{abs} \left(\log \frac{P(\text{Sense}_1 | f_i = v_j)}{P(\text{Sense}_2 | f_i = v_j)} \right)
\]

- Associate the appropriate sense with each test