Last Class: Question-Answering Systems

Today: Probabilistic Parsing

1. Parsing with PCFGs
2. Problems
3. Probabilistic lexicalized CFGs

CFG’s

A context free grammar consists of:

1. a set of non-terminal symbols N
2. a set of terminal symbols Σ (disjoint from N)
3. a set of productions, P, each of the form $A \rightarrow \alpha$, where A is a non-terminal and α is a string of symbols from the infinite set of strings ($\Sigma \cup N$)
4. a designated start symbol S

Probabilistic CFGs

Augments each rule in P with a conditional probability:

$$A \rightarrow \beta \ [p]$$

where p is the probability that the non-terminal A will be expanded to the sequence β. Often referred to as

$$P(A \rightarrow \beta) \text{ or } P(A \rightarrow \beta|A).$$

Example

S \rightarrow NP VP	[.80]
S \rightarrow Aux NP VP	[.15]
S \rightarrow VP	[.05]
NP \rightarrow Det Nom	[.20]
NP \rightarrow $Proper-Noun$	[.35]
NP \rightarrow Nom	[.05]
NP \rightarrow $Pronoun$	[.40]
Nom \rightarrow $Noun$	[.75]
Nom \rightarrow $Noun$ Nom	[.20]
Nom \rightarrow $Proper-Noun$ Nom	[.05]
VP \rightarrow $Verb$	[.35]
VP \rightarrow $Verb$ NP	[.40]
VP \rightarrow $Verb$ NP NP	[.05]

Det \rightarrow $that$	[.05]
Det \rightarrow the	[.80]
Det \rightarrow a	[.15]
Noun \rightarrow $book$	[.10]
Noun \rightarrow $flights$	[.50]
Noun \rightarrow $meal$	[.40]
Noun \rightarrow $book$	[.30]
Verb \rightarrow $include$	[.30]
Verb \rightarrow $want$	[.40]
Aux \rightarrow can	[.40]
Aux \rightarrow $does$	[.30]
Aux \rightarrow do	[.30]
Proper-Noun \rightarrow TWA	[.40]
Proper-Noun \rightarrow $Denver$	[.40]
Pronoun \rightarrow you	[.40]
Pronoun \rightarrow I	[.60]
Why are PCFGs useful?

• Useful in disambiguation
 – Choose the most likely parse
 – Computing the probability of a parse
 If we make independence assumptions, \(P(T) = \prod_{n \in T} p(r(n)) \).

• Useful in language modeling tasks

Where do the probabilities come from?

1. from a treebank:
 \[P(\alpha \rightarrow \beta | \alpha) = \frac{\text{Count}(\alpha \rightarrow \beta)}{\text{Count}(\alpha)} \]

2. use EM (forward-backward algorithm, inside-outside algorithm)

Parsing with PCFGs

Produce the most likely parse for a given sentence:

\[\hat{T}(S) = \text{argmax}_{T \in \tau(S)} P(T) \]

where \(\tau(S) \) is the set of possible parse trees for \(S \).

• Augment the Earley algorithm to compute the probability of each of its parses.

When adding an entry \(E \) of category \(C \) to the chart using rule \(i \) with \(n \) subconstituents, \(E_1, \ldots, E_n \):

\[P(E) = P(\text{rule } i \mid C) \cdot P(E_1) \cdot \ldots \cdot P(E_n) \]

• probabilistic CYK (Cocke-Younger-Kasami) algorithm
Problems with PCFGs

Do not model *structural dependencies*.

Often the choice of how a non-terminal expands depends on the location of the node in the parse tree.

E.g. Strong tendency in English for the syntactic subject of a spoken sentence to be a pronoun.

- 91% of declarative sentences in the Switchboard corpus are pronouns (vs. lexical).
- In contrast, 34% of direct objects in Switchboard are pronouns.

Problems with PCFGs

Do not adequately model *lexical dependencies*.

Moscow sent more than 100,000 soldiers into Afghanistan...

PP can attach to either the NP or the VP:

NP → NP PP or VP → V NP PP?

Attachment choice depends (in part) on the verb: *send* subcategorizes for a destination (e.g. expressed via a PP that begins with *into*).

Probabilistic lexicalized CFGs

- Each non-terminal is associated with its head.
- Each PCFG rule needs to be augmented to identify one rhs constituent to be the head daughter.
- Headword for a node in the parse tree is set to the headword of its head daughter.

Example

```
S(dumped)
  NP(workers)  VP(dumped)
    NNS(workers) VBD(dumped) NP(sacks) PP(into)
      NNS(sacks) P(into) NP(bin)
        DT(a) NN(bin)
```

workers dumped sacks into a bin
Probabilistic lexicalized CFGs

View a lexicalized (P)CFG as a simple (P)CFG with a lot more rules.

\[\text{VP(dumped)} \rightarrow \text{VBD(dumped)} \text{ NP(sacks) PP(into)} \left[3 \times 10^{-10}\right] \]
\[\text{VP(dumped)} \rightarrow \text{VBD(dumped)} \text{ NP(cats) PP(into)} \left[8 \times 10^{-10}\right] \]
\[\text{VP(dumped)} \rightarrow \text{VBD(dumped)} \text{ NP(sacks) PP(above)} \left[1 \times 10^{-12}\right] \]

Problem?

Incorporating lexical dependency information

Incorporates lexical dependency information by:

1. relating the heads of phrases to the heads of their constituents;
2. including syntactic subcategorization information.

Syntactic subcategorization dependencies:

Probability of a rule \(r \) of syntactic category \(n \):
\[p(r(n) \mid n, h(n)) \]

Example: probability of expanding VP as \(\text{VP} \rightarrow \text{VBD} \text{ NP PP} \) will be
\[p(\text{VP} \mid \text{VBD, dumped}) \]

Incorporating lexical dependency information

Condition the probability of a node \(n \) having a head \(h \) on two factors:

1. the syntactic category of the node \(n \)
2. the head of the node’s mother \(h(m(n)) \)
\[p(h(n) = \text{word}_i \mid n, h(m(n))) \]

Computing the probability of a parse

Producing the most likely parse for a given sentence changes from:
\[P(T) = \prod_{n \in T} p(r(n)) \]
to
\[P(T) = \prod_{n \in T} p(r(n) \mid n, h(n)) \ast p(h(n) \mid n, h(m(n))) \]
Evaluation Measures and State of the Art

- labeled recall: \(\frac{\# \text{ correct constituents in candidate parse of } s}{\# \text{ correct constituents in treebank parse of } s} \)
- labeled precision: \(\frac{\# \text{ correct constituents in candidate parse of } s}{\text{total } \# \text{ of constituents in candidate parse of } s} \)
- crossing brackets: the number of crossed brackets

State of the art: 90% recall, 90% precision, 1% crossed bracketed constituents per sentence (WSJ treebank)