HMM Tagger

Given \(W = w_1, \ldots, w_n \), find \(T = t_1, \ldots, t_n \) that maximizes

\[
P(t_1, \ldots, t_n | w_1, \ldots, w_n)
\]

Restate using Bayes’ rule:

\[
(P(t_1, \ldots, t_n) \ast P(w_1, \ldots, w_n | t_1, \ldots, t_n)) / P(w_1, \ldots, w_n)
\]

Ignore denominator...
Make independence assumptions...

Independence Assumptions (factor 1)

\(P(t_1, \ldots, t_n) \): approximate using \text{n-gram model}

- **bigram** \(\prod_{i=1,n} P(t_i | t_{i-1}) \)
- **trigram** \(\prod_{i=1,n} P(t_i | t_{i-2} t_{i-1}) \)

Independence Assumptions (factor 2)

\(P(w_1, \ldots, w_n | t_1, \ldots, t_n) \): approximate by assuming that a word appears in a category independent of its neighbors

\[
\prod_{i=1,n} P(w_i | t_i)
\]

Assuming bigram model:

\[
P(t_1, \ldots, t_n) \ast P(w_1, \ldots, w_n | t_1, \ldots, t_n) \approx \prod_{i=1,n} P(t_i | t_{i-1}) \ast P(w_i | t_i)
\]
Hidden Markov Models

Equation can be modeled by an HMM.
- **states**: represent a possible lexical category
- **transition probabilities**: bigram probabilities
- **observation probabilities, lexical generation probabilities**: indicate, for each word, how likely that word is to be selected if we randomly select the category associated with the node.

Viterbi Algorithm

c: number of lexical categories

\[P(w_t|t_i) \]: lexical generation probabilities
\[P(t_i|t_j) \]: bigram probabilities

Find most likely sequence of lexical categories \(T_1, \ldots, T_n \) for word sequence.

Initialization

For \(i = 1 \) to \(c \)

\[\text{SCORE}(i,1) = P(t_i|\phi) \ast P(w_1|t_i) \]
\[\text{BPTR}(i,1) = 0 \]

Iteration

For \(t = 2 \) to \(n \)

For \(i = 1 \) to \(c \)

\[\text{SCORE}(i,t) = \max_{j=1..c} (\text{SCORE}(j,t-1) \ast P(t_i|t_j)) \ast P(w_t|t_i) \]
\[\text{BPTR}(i,t) = \text{index of } j \text{ that gave max} \]

Identify Sequence

\(T(n) = i \) that maximizes \(\text{SCORE}(i,n) \)

For \(i = n-1 \) to \(1 \)

\(T(i) = \text{BPTR}(T(i+1), i+1) \)

Results

- Effective if probability estimates are computed from a large corpus
- Effective if corpus is of the same style as the input to be classified
- Consistently achieve accuracies of 96% or better using trigram model
- Cuts error rate in half vs. naive algorithm (90% accuracy rate)
- Can be smoothed using backoff or deleted interpolation...
Extensions

- Can train HMM tagger on unlabeled data using the EM algorithm, starting with a dictionary that lists which tags can be assigned to which words.
- EM then learns the word likelihood function for each tag, and the tag transition probabilities.
- Merialdo (1994) showed, however, that a tagger trained on even a small amount hand-tagged data works better than one trained via EM.