Last class
- Smoothing
 » Add-one estimation
 » Witten-Bell discounting
 » Good-Turing

Today
- Combining estimators
 » Deleted interpolation
 » Backoff

Combining estimators
- Smoothing methods
 » Provide the same estimate for all unseen (or rare) n-grams
 » Make use only of the raw frequency of an n-gram
- But there is an additional source of knowledge we can draw on --- the n-gram “hierarchy”
 » If there are no examples of a particular trigram, \(w_n, w_{n-1}, w_{n-2} \), to compute \(P(w_n \mid w_{n-2}, w_{n-1}) \), we can estimate its probability by using the bigram probability \(P(w_n \mid w_{n-1}) \).
 » If there are no examples of the bigram to compute \(P(w_n \mid w_{n-1}) \), we can use the unigram probability \(P(w_n) \).
- For n-gram models, suitably combining various models of different orders is the secret to success.

Simple linear interpolation
- Construct a linear combination of the multiple probability estimates.
 » Weight each contribution so that the result is another probability function.
 \[
P(w_n \mid w_{n-2}, w_{n-1}) = \lambda_3 P(w_n \mid w_{n-1}, w_{n-2}) + \lambda_2 P(w_n \mid w_{n-1}) + \lambda_1 P(w_n)
\]
 » Lambda’s sum to 1.
- Also known as (finite) mixture models
- Deleted interpolation: when the functions being interpolated all rely on a subset of the conditioning information of the most discriminating function

Backoff (Katz 1987)
- Non-linear method
- The estimate for an n-gram is allowed to back off through progressively shorter histories.
- The most detailed model that can provide sufficiently reliable information about the current context is used.
- Trigram version (first try):
 \[
 \hat{P}(w_i \mid w_{i-2} w_{i-1}) = \begin{cases}
 P(w_i \mid w_{i-2} w_{i-1}), & \text{if } C(w_{i-2} w_{i-1} w_i) > 0 \\
 \alpha_1 P(w_i \mid w_{i-1}), & \text{if } C(w_{i-2} w_{i-1} w_i) = 0 \text{ and } C(w_{i-1} w_i) > 0 \\
 \alpha_2 P(w_i), & \text{otherwise.}
 \end{cases}
 \]
Recursive equation for backoff

\[
\hat{P}(w_n \mid w_{n-N+1}^{n-1}) = \hat{P}(w_n \mid w_{n-N+1}^{n-1}) + \\
\theta \left(P(w_n \mid w_{n-N+1}^{n-1}) \right) \alpha \hat{P}(w_n \mid w_{n-N+2}^{n-1})
\]

\[
\theta(x) = \begin{cases}
1, & \text{if } x = 0 \\
0, & \text{otherwise.}
\end{cases}
\]

\(P(.)'s\) are MLE

Backoff + discounting

- Use discounting to tell us how much probability mass to set aside for all the events we haven’t seen
- Use backoff to tell us how to distribute this probability
- Role of the alphas?

- So…any backoff model must also be discounted/smoothed.

Components

\[
\tilde{P}(w_n \mid w_{n-N+1}^{n-1}) = \frac{c^*(w_n^{n-N+1})}{c(w_n^{n-N+1})}
\]

\[
\alpha(w_{n-N+1}^{n-1}) = 1 - \sum_{w_n : c(w_{n-N+1}^{n-1}) > 0} \tilde{P}(w_n \mid w_{n-N+1}^{n-1})
\]

normalized by the total probability of all the n-1-grams (bigrams) that begin some n-gram (trigram).
Backoff (final equation)

- Trigram form

\[
\hat{P}(w_i \mid w_{i-2}w_{i-1}) = \begin{cases}
\tilde{P}(w_i \mid w_{i-2}w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_i) > 0 \\
\alpha_1(w_{i-2}) \tilde{P}(w_i \mid w_{i-1}), & \text{if } C(w_{i-2}w_{i-1}w_i) = 0 \\
\quad \text{and } C(w_{i-1}w_i) > 0 \\
\alpha_2(w_{i-1}) \tilde{P}(w_i), & \text{otherwise.}
\end{cases}
\]

Backoff

- When discounting, we usually ignore counts of 1
- Problems with backoff?
 - Probability estimates can change suddenly on adding more data when the back-off algorithms selects a different order of n-gram model on which to base the estimate.
- Work well in practice.