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Abstract

A number of important questions in ecology involve the possibility of interactions or ‘‘coupling’’ among potential components of

ecological systems. The basic question of whether two components are coupled (exhibit dynamical interdependence) is relevant to

investigations of movement of animals over space, population regulation, food webs and trophic interactions, and is also useful in the

design of monitoring programs. For example, in spatially extended systems, coupling among populations in different locations implies

the existence of redundant information in the system and the possibility of exploiting this redundancy in the development of spatial

sampling designs. One approach to the identification of coupling involves study of the purported mechanisms linking system

components. Another approach is based on time series of two potential components of the same system and, in previous ecological

work, has relied on linear cross-correlation analysis. Here we present two different attractor-based approaches, continuity and mutual

prediction, for determining the degree to which two population time series (e.g., at different spatial locations) are coupled. Both

approaches are demonstrated on a one-dimensional predator–prey model system exhibiting complex dynamics. Of particular interest is

the spatial asymmetry introduced into the model as linearly declining resource for the prey over the domain of the spatial coordinate.

Results from these approaches are then compared to the more standard cross-correlation analysis. In contrast to cross-correlation,

both continuity and mutual prediction are clearly able to discern the asymmetry in the flow of information through this system.

Published by Elsevier Inc.
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1. Introduction

Ecological systems and their constituent populations
vary over time and space, and a central goal of
ecologists is to develop mechanistic explanations for
such variation that can be used for prediction (Rhodes
et al., 1996; Ranta et al., 1997; Koenig, 1999; Bjørnstad
and Grenfell, 2001; Keeling and Rohani, 2002). A class
of mechanistic explanations of special interest to
ecologists involves some kind of ‘‘coupling’’ (dynamical
e front matter Published by Elsevier Inc.
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interdependence) among system components. For single
species populations in different locations, coupling
usually requires movement among locations. This
movement may involve changes in residence location
(dispersal; Clobert et al., 2001) or regular shifts between
seasonal residences (migration; Webster et al., 2002).
For an ecological community in a single location,
coupling among multiple species typically involves some
sort of mechanistic ecological interaction such as
competition (e.g., Durrett and Levin, 1998) or predation
(e.g., Hastings, 2001; Tobin and Bjørnstad, 2003). For a
community studied in multiple locations, coupling
mechanisms can include both movement and interspe-
cific interactions.

www.elsevier.com/locate/ytpbi


ARTICLE IN PRESS
J.M. Nichols et al. / Theoretical Population Biology 67 (2005) 9–2110
There are two general approaches to drawing
inferences about coupling in ecological systems. One
approach is to directly study the mechanisms them-
selves. For example, one might study movement of
animals among different locations in a system of interest
(e.g., Spendelow et al., 1995; Blums et al., 2003) or
predation by one or more species on populations of prey
(e.g., Karanth and Sunquist, 1995; Krebs et al., 1995;
Korpimaki and Krebs, 1996). The other approach to the
study of coupling is less direct and involves joint
analyses of time-series data either from one or more
species at multiple locations or from potentially inter-
acting species at the same location(s) (Ranta et al., 1997;
Koenig, 1999; Bjørnstad et al., 1999a, b; Bjørnstad and
Grenfell, 2001; Tobin and Bjørnstad, 2003). In this
paper, we focus on the second approach and on efforts
to detect coupling between two potentially interacting
systems based on time series of state variables char-
acterizing system dynamics.
Assume that we have measured state variables such as

population size at two nearby locations over a large
number of years or generations or other time intervals of
interest. From these data, we would like to draw
inferences about the existence, strength, and even
direction of possible coupling of the populations and
their associated dynamics (which are needed to both
parsimoniously specify the current state of the system,
but also to predict expected system change). The
traditional approach of ecologists to such inferences
focuses on spatial covariance in population dynamics
and uses cross-correlation, typically with time lag 0
(Ranta et al., 1997; Bjørnstad et al., 1999a, b; Koenig,
1999; Keeling and Rohani, 2002; Post and Forchham-
mer, 2002). Specifically, the Pearson product-moment
correlation coefficient is computed between either
population sizes or rates of change in population size
(ratios of abundance in successive sampling periods) in
the two locations. Use of rates of population change,
rather than population size itself, is intended to exclude
correlations that might arise from simple time trends in
abundance. Positive correlations resulting from such
analyses are interpreted as evidence of, and sometimes
even used to define, population synchrony (Post and
Forchhammer, 2002). In addition, moment closure
methods have been suggested for accomodating high-
er-order correlation densities, which may provide a
better description of system dynamics in some cases
(Dieckmann et al., 2000).
Cross-correlation is based on linear measures and

addresses the existence of a specific kind of functional
relationship between time series. For linear systems,
cross-correlation is adequate to detect and describe
dynamical interdependence of pairs of system state
variables, where ‘‘dynamical interdependence’’ essen-
tially means that the state variables are both compo-
nents of the same dynamical system (e.g., Schiff et al.,
1996). However, small linear correlation does not imply
that other (nonlinear) functional relationships do not
exist (Pecora et al., 1995). The nonlinear dynamics that
characterize at least some biological populations and
communities (Schaffer, 1985; Schaffer and Kot, 1986;
Constantino et al., 1995, 1997; Dennis et al., 1995, 1997)
argue for the use of a more general approach to
assessment of dynamical interdependence.
Another limitation of linear cross-correlation is the

symmetric nature of the function. The influence of the
dynamics of one component of an ecological system on
the dynamics of another component, and hence the flow
of information in such a system, are frequently
asymmetric. For example, in the strict source–sink
system described by Pulliam (1988), the source popula-
tion is not influenced by dynamics of animals in the sink,
whereas sink dynamics are largely determined by
dynamics of the source population. Linkages among
food web components are frequently asymmetric, and
the concepts of top-down vs. bottom-up regulation (e.g.,
Harrison and Cappuccino, 1995) are based on such
asymmetries. Monitoring programs for ecosystems
frequently are based on the concept of ‘‘indicator
species’’. This concept is based on the premise that
dynamics of some system components carry more
information about the system than dynamics of other
components. Identification of such asymmetries in
information content is important to the design of
monitoring programs. General methods able to identify
asymmetries in influence or information flow among
system components would thus be useful to ecologists.
A more general approach than looking for a specific

(e.g., linear) functional relationship between two time
series involves first reconstructing the dynamics of the
two systems, for example using attractor reconstruction
via delay coordinates (Sauer et al., 1991; Williams, 1997;
Kantz and Schreiber, 1999), and then generally asking
whether the attractors are related by a function. Takens’
embedding theorem (Takens, 1981) states that the
trajectory of a dynamical system in phase space can be
reconstructed from a time series of a single state variable
from the system. Thus, a functional relationship must
exist between attractors reconstructed from different
state variables from the same system. The possibility of
dynamical interdependence can be investigated by
drawing inferences about the properties of potential
functions relating two reconstructed attractors. In this
paper, we use two approaches to this type of inference,
mutual prediction (Schiff et al., 1996) and continuity

statistics (Pecora et al., 1995; Pecora and Carroll, 1996;
Moniz et al., 2004).
Continuity tests for the existence of a mapping from

one time series to another i.e. does a functional
relationship exist? This same test, applied in reverse,
can test for the mathematical concept of injectivity, i.e.
points that are close together in the second time series
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are also close together in the first. Mathematical
definitions of continuity, injectivity and the practical
implementation of this test are discussed in Section 2.3.
Given that a relationship exists, one can determine the
degree to which one time series predicts the other. In
fact, measures of predictability have been used as a test
of continuity between time series-data (Schiff et al.,
1996). Certainly, if one time series can predict the other,
the two are related by some function. The concept of
mutual predictability is discussed in Section 2.4. Both
tests are then applied to data collected from a spatially
extended predator–prey model exhibiting complex
dynamics and used to determine the degree of coupling
between spatially extended time series. Comparisons are
made between continuity, mutual prediction, and the
more standard approach of using cross-correlation in
order to quantify the degree of coupling. Results
highlight the clear inability of the cross-correlation
function to extract the relevant, and in this case
asymmetric, dynamical relationships between ecological
time series. Results also indicate the subtle yet important
differences between continuity and mutual prediction.
Although they are ostensibly measuring the same
thing the implementation can lead to non-trivial
differences in the information they provide. In light of
these important differences these two metrics should be
viewed as complementary to each other rather than as
alternatives.
2. Time-series analysis for inference about coupling

2.1. Cross-correlation analysis

The standard approach of ecologists for assessing the
degree of coupling between time series at different
spatial locations is the cross-correlation function. Given
two time series, xðnÞ and yðnÞ; the linear cross-correla-
tion is computed via the cross-covariance,

cxyðkÞ ¼
1

N � k

XN�k

i¼1

ðxðiÞ � x̄Þðyði þ kÞ � ȳÞ;

k ¼ 0; 1; 2; . . . ð1Þ

as

rxyðkÞ ¼
cxyðkÞ

1
N�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�k
i¼1 ðxðiÞ � x̄Þ2

PN�k
i¼1 ðyðiÞ � ȳÞ2

q : (2)

Cross-correlation values for negative lags may be
obtained by noting that rxyð�kÞ ¼ ryxðkÞ: By design,
this particular metric is testing for the presence of a
linear functional relationship between the dynamics of x

and y. Values near unity are strong indicators that such
a relationship exists while those near zero imply the
absence of coupling. The cross-correlation function will
typically fluctuate as a function of delay (phase) k. It is
therefore convenient to quantify the coupling strength
by taking the maximum of Eq. (2):

gR
xy ¼ max jrxyðkÞj; k ¼ 1; . . . ;N; (3)

where the superscript R will be used to denote ‘‘cross-
correlation’’. This particular metric is the current
standard in ecological investigations and has been
used in a variety of applications (e.g., Bjørnstad et al.,
1999a, b; Koenig, 1999; Post and Forchhammer, 2002).

2.2. Attractor-based methods: review of phase space

analysis

The other two approaches to inference about cou-
pling, continuity and mutual prediction, are based on
phase space analysis and attractor reconstruction.
Assume the dynamics of a system evolve according to
_xðtÞ ¼ FðxðtÞÞ; x 2 Rd : An alternative to time or fre-
quency domain descriptions of the dynamics is to view
the system output in the d-dimensional space defined by
the state variables x; or, phase space. An initial
condition xð0Þ will, under the action of F; asymptotically
approach a subset of phase space referred to as the
system’s attractor X. The attractor may be thought of as
a geometric object (a collection of points) in phase space
to which a set of nearby trajectories approaches. In
practice, one simply plots the measured variables against
each other and then uses the resulting steady state,
geometric portrait of the dynamics to describe the
system. For example, the attractor for the well-known
two-dimensional Lotka–Volterra predator/prey model is
visualized by plotting predator vs. prey (x1 vs. x2). A
variety of attractor-based metrics exist for quantifying
various aspects of system dynamics, and these metrics
have seen some use in ecology (Schaffer, 1985; Schaffer
and Kot, 1986; Hastings et al., 1993; Pascual, 1993;
Little et al., 1996; Pascual and Levin, 1999; Pascual and
Ellner, 2000).
For certain systems the practitioner may be unable to

measure, or even identify, each of the system’s state
variables. In this case we make use of a collection of
powerful mathematical theorems referred to collectively
as the embedding theorems. The theorems are generally
credited to the early work of Whitney (1936) and later
Takens (1981) and have been generalized in subsequent
work by Sauer et al. (1991), and more recently, Ott and
Yorke (2003). Using a single measure of system response
(time-series of a single state variable), the complete state
vector may be qualitatively reconstructed at any point in
time via

X � xðnÞ ¼ ðxðnÞ;xðn þ TÞ; . . . ; xðn þ ðm � 1ÞTÞÞ: (4)

Here boldface type denotes a vector and the upper-
case X is used to represent the entire ensemble of
points comprising the attractor. The reconstructed
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pseudo-state vectors are simply delayed copies of the
original time series and will qualitatively preserve the
dynamics of the ‘‘true’’ underlying system provided that
the delay T and embedding dimension m are chosen
properly. Suggestions for these choices are given by
Fraser and Swinney (1986) and Kantz and Schreiber
(1999) for delay and Kennel et al. (1992) for embedding
dimension.

2.3. Attractor-based methods: continuity

Continuity of a function f at point x0 in a domain X

implies that for every neighborhood V of f ðx0Þ there
must exist a neighborhood U around x0 such that all
points within U map into V. The precise mathematical
definition is as follows: for every x0 2 X ; 8�40 9d40
such that kx � x0kod ! kf ðxÞ � f ðx0Þko�: In other
words, for a given set V of points in a local region of size
� on the f ðX Þ attractor, there is a corresponding d-sized
set U on the X attractor from which points in V

originated. A schematic illustrating the concept of
continuity is shown in Fig. 1 (left). Points within the
d-ball on the ‘‘source’’ attractor are mapped via the
function F into an �-ball on the second ‘‘target’’
attractor. A lack of continuity is therefore indicated by
points in the d-ball failing to map into the �-ball (Fig. 1,
center). If a function between source and target is
indicated but the inverse relationship is not, this
indicates that the population in the target region
depends on the source, but the source does not depend
on the target. Typically, this means that dynamics in the
source are somehow collapsed onto the target by the
function. The situation where F�1 fails to be continuous
is depicted in Fig. 1(right).
Assuming for now that the data do not include noise,

implementing the definition algorithmically is straight-
forward. In the context of spatially distributed systems
we are searching for the existence of the function f

between data collected from two different spatial
locations. We begin with two N-point attractors xðnÞ

and yðnÞ; n ¼ 1; . . . ;N either measured directly or
reconstructed using Eq. (4). These two attractors will
δ

F

Y Z = F(Y)

F?

a b c d e f g h i j k l

ε-ball

δ-ball

Fig. 1. Illustration of the existence of a continuous function between source

points from d-balls that do not all map to the �-ball (middle), and A continuo

preimages in 2 disjoint d-balls and no continuity between hypothetical attra
be referred to as the ‘‘source’’ and ‘‘target’’, respectively.
A fiducial point is chosen randomly from the source as
xðf Þ and the near neighbors located as xðpiÞ : kxðpiÞ �

xðf Þkod; i ¼ 1; . . . ; nd: The corresponding neighbor-
hood on the target attractor is given by the points with
the same time indices, yðpiÞ: We then check to see if
kyðpiÞ � yðf Þko�; denoting the number of points that
meet this criteria n�: Of course, not all points will map
into the � neighborhood even if there is continuity
between the two data sets. If a point in the source
neighborhood is present due to noise (e.g., measurement
error), that point will most likely not map into the target
neighborhood. Making the algorithm practical therefore
requires making a probabilistic judgment with respect to
how many points from the d region are required to map
to the � region.
We establish a relevant null hypothesis by assuming

that points from the given d-ball map to points in the �-
ball by a coin flip. In order to reject the null
(equivalently, to accept the d-ball as passing the
continuity test for this �), we must lie in the tail of the
binomial distribution. Thus, we must have 95%
confidence that the points from the d-ball did not map
to the �-ball by guessing. To quantify this, the
probability of each x in the d-ball mapping inside

the �-ball is 0.5. Then for nd points in the d ball, we find
the number n� of corresponding points in the � ball. The
null hypothesis is rejected with 95% confidence for this �
if

Xnd
j¼n�

nd

j

 !
ð0:5Þ j

ð0:5Þnd�jo0:05; (5)

that is, if the probability of having n� or more of the nd

d-ball points land in the �-ball by chance is less than
0.05. We formulate the statistic to be based not on the
acceptance or rejection of the null hypothesis, but on the
minimum � that can be used to reject the null hypothesis
at each point. We call this value �: This is the smallest �
for which a d can be found to reject the null hypothesis.
We perform this computation about some number of

fiducial points Nf and take the average value as the
F

-1X  F   (Y)
Y = F(X)

=

F-1

j h f a

b d e l

k i g c

ε

and target attractors (left), the absence of such a function resulting in

us function with no continuous inverse i.e. points from the �-ball have
ctors (right).
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measure reflecting continuity between the data X and Y

via

gC
xy ¼

1

Nf

XNf

f

�f ; (6)

where superscript C denotes ‘‘continuity’’. The con-
tinuity statistic for known functional relationships, e.g.,
between one spatial location and itself, provides the
baseline gC

xx . Values of gC
xy for other proposed relation-

ships are then computed and compared to this baseline
to suggest existence or non-existence of a functional
relationship between the source and the target. Note
that this is a one-way statistic; the existence of a function
from source to target does not guarantee the existence of
a continuous function from target to source. The
continuity of an inverse function can be tested by
reversing source and target and finding �’s for the
proposed inverse function (see again Fig. 1 right). This
property is what allows the continuity metric to expose
asymmetries in the data.
2.4. Attractor-based methods: mutual prediction

The mutual prediction algorithm assesses the degree
to which the dynamics of one signal or attractor can be
used to predict the dynamics of another. If one set of
data can accurately forecast points on the other set, the
two systems are assumed to be coupled in some fashion
implying dynamical interdependence. The mutual pre-
diction algorithm has also been used to establish
continuity between time series Schiff et al. (1996); yet
is different from the above described continuity test in a
very important way (to be described). These two
Location 1

X

y (f+s)^

Local neighborhood

X = F (Y

x(p
j
)

Fig. 2. Description of mutua
algorithms, continuity and mutual prediction, should
therefore be viewed not as competing metrics for
assessing continuity, but instead as alternatives for
establishing the existence of a functional relationship
between time series.
As with the continuity metric, let xðnÞ be the attractor

at location 1 and yðnÞ be the attractor at location 2. We
wish to see the degree to which the dynamical
description at location 1 can be used to forecast values
on the attractor at location 2. A fiducial trajectory (i.e. a
point) is randomly selected on attractor 2 as yðf Þ: The
neighborhood local to this point is then selected from
the attractor at location 1 as xðpiÞ : kxðpiÞ �

yðf Þko�; i ¼ 1; . . . ; n�: Note the time indices pi need
not have any temporal relationship to the fiducial point,
as the selection of the neighborhood is made using only
geometric considerations. This local neighborhood can
then be used to make the s-step forecast

ŷðf þ sÞ ¼
1

n�

Xn�
i¼1

xðpi þ sÞ: (7)

Eq. (7) makes a zeroth-order prediction of the dynamics
at location 2 using the description at location 1. In this
work we use a prediction horizon of s ¼ 1: A measure of
dynamical dissimilarity is then introduced as

gM
xy ¼

1

ms2x
kŷðf þ sÞ � yðf þ sÞk; (8)

where the normalizing constant is the variance of the
first time series, s2x ¼ 1=ðN � 1Þ

PN
n¼1ðxðnÞ � x̄Þ2 (over-

bar denotes mean) multiplied by the dimension of the
attractor. Because the prediction is made in m dimen-
sions the error is resolved with the operator k � k which
takes the Euclidean distance between observed and
Location 2

Y

Fiducial Trajectory

y (f)

y (f+s)

)

l prediction algorithm.
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predicted values. An illustration of the algorithm is
provided in Fig. 2 where the attractor at location 1 is
used to forecast points on location 2. Similar dynamics
result in low prediction errors while errors close to unity
occur for two dissimilar processes.
Implementation of this scheme requires both a choice

of � and a mechanism for dealing with sparsely
populated neighborhoods. With regard to the latter, if
no near neighbors can be found, the best possible
prediction is to choose the mean of the time series as the
future value i.e. ŷðf þ sÞ ¼ x̄ðnÞ: Choice of � is typically
made such that the neighborhoods reflect local
dynamics, yet are large enough so that a sufficient
number of points (on average) can be found in the
neighborhoods. A convenient rule of thumb, used by the
authors and others, is to choose 0:01so�o0:1s; where s
is the standard deviation of the time series.
Mutual prediction is different from continuity in that

the neighborhoods being compared are established
through purely geometric considerations (as opposed
to using the same time indices when establishing
neighborhoods in continuity). It is therefore entirely
possible to have excellent continuity and large predic-
tion errors. Even for small � if there exist no near
neighbors on xðnÞ (in a geometric sense) to the fiducial
point yðf Þ; the prediction will be poor. Likewise, there
can exist poor continuity and small prediction errors.
Again, dynamics that evolve in similar fashion at similar
attractor locations are all that is required for good
predictability whereas good continuity requires tempo-

rally associated neighborhoods to remain local (i.e. have
a small �). In many situations, however, these two
metrics tend to produce similar results and both can be
used effectively to assess the directionality of informa-
tion flow in nonlinear, spatially extended systems.
3. Numerical model

In order to contrast the three approaches to assess-
ment of coupling, a spatially one-dimensional preda-
tor–prey model was considered. The model was
introduced by Pascual (1993) and explored further by
Little et al. (1996) and describes the evolution of the
prey p and predator h according to

@p

@t
¼ rxpð1� pÞ �

ap

1þ bp
h þ d

@2p

@x2
;

@h

@t
¼

ap

1þ bp
h � mh þ d

@2h

@x2
;

rx ¼ e � fx: ð9Þ

The dimensionless variables p; h; and x represent the
prey density, predator density, and spatial coordinate,
respectively. Reflective boundary conditions are con-
sidered at x ¼ 0; 1 as @p

@x
¼ @h

@x
¼ 0: Parameters are the
predator death rate, m, diffusion coefficient d, the
predator/prey coupling a, the prey carrying capacity b,
and the intrinsic growth rate rx of the prey population,
which is (for non-zero f) a function of space. The
resource term is a linearly declining function of space
with value r0 ¼ e ¼ const: at the boundary. The para-
meter f governs the rate of resource decline and hence
the degree of spatial asymmetry. As in Pascual (1993)
the death rate, diffusion coefficient, boundary resource,
and carrying capacity are fixed at m ¼ 0:6; d ¼

10�4; e ¼ 5:0; b ¼ 2:0:
In the absence of diffusion, this system possesses three

fixed point (equilibrium) solutions

FP1;2;3 � ðp; h
Þ ¼ ð0; 0Þ; ð1; 0Þ; m=ða � mbÞ;

��
ða � ð1þ bÞmÞðe � fxÞ

ða � bmÞ
2

	

:

The stability of these equilibria is largely governed by
the coupling coefficient a. The eigenvalues l of the
Jacobian of Eq. (9) evaluated at FP2;3 ðFP1 is the trivial
solution) give the following results. For ao3:6 the stable
solution is given by FP2 ¼ ð1; 0Þ at every point in space.
For aX3:6 this point becomes universally (for all x)
unstable and all trajectories at all spatial locations
migrate toward FP3: This new solution remains stable
for 3:6pap4:5; however the type of stability varies as a
function of x. As a is increased the eigenvalues of the
Jacobian begin taking on imaginary parts. In the case
of f ¼ 1:9; for example, perturbations to FP3 for
3:65pap3:95 progress from exponential decay to
oscillatory decay in a cascade starting at x ¼ 1 as the
imaginary parts of l become positive (see Fig. 3c). Then,
for a ¼ 4:5 each of the lattice sites simultaneously
(independent of x) undergoes a Hopf bifurcation with
the oscillations occurring at different frequencies,
dictated by the imaginary parts of the eigenvalues.
Fig. 3d shows the variations in ImðlÞ with x for
three different values of resource slope. The steeper
the slope in the resource term, the more disparate the
frequencies of oscillation as the location is changed from
x ¼ 0 to 1. The interplay between variations in
frequency with x, and the coupling made possible by
the addition of the diffusive term are most likely
necessary for complex dynamics. Earlier work on this
model (Pascual, 1993) showed that for d ¼ 10�4 the
system in fact does exhibit chaos.
Fig. 4 illustrates the effect of changing the slope f on

the resulting phase plots of p vs. h. Clearly, the dynamics
are more complex near x ¼ 1 as the presence of multiple
frequency components are visible in the attractors. This
is in contrast to the attractors at x ¼ 0 which exhibit
only a single-frequency limit cycle oscillation. One
possible reason for the asymmetry concerns the average
number of predators as a function of space. From the
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Fig. 3. Cascade transition to oscillatory behavior as a function of ‘‘a’’ (left) and differences in linearized frequencies as a function of ‘‘x’’ for varying

resource gradients (right).

Fig. 4. Attractors (p v. h) at varying spatial locations for f ¼ 0:9 (left two columns), 1.4 (center columns), 1.9 (right two columns).
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fixed-point analysis, FP3 is a linearly decreasing func-
tion of x for the predator term (this is also evidenced in
the attractors of Fig. 4). Therefore, far fewer predators
exist, on average, near x ¼ 1: This is important when
considering the coupling term dð@2h=@x2Þ: By numerical
approximation this term is given by ðd=Dx2Þðhiþ1 �

2hi þ hi�1Þ; where Dx is the spatial resolution and
the notation hi denotes the predator population at
the ith lattice site. If the number of predators is larger
at site i � 1; the dynamics at that site will have a
larger influence on the dynamics at site i then will
those at site i þ 1: By this mechanism, information at
lower spatial indices (higher resource abundance) can
more easily influence the dynamics at higher indices
(lower resource abundance). The dynamics near x ¼ 1
therefore show an increased complexity as those sites are
influenced by all other sites for xo1: Within-
site processes should be more important to the dynamics
of high-resource sites (small x), whereas immigra-
tion from other locations are expected to be more
important to the dynamics of low-resource sites (large
x). As a result, dynamical information tends to
propagate ‘‘downhill’’ toward regions of low-resource
abundance.
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4. Application of approaches to assessment of coupling

We sought to use the spatial predator–prey model to
investigate the three described approaches to assessment
of coupling. Specifically, predator and prey dynamics
throughout the spatial system are coupled via preda-
tor–prey interactions and movement. Thus, we can
assess the evidence of coupling, for example, between
predator and prey dynamics at the same or any other
site. We expected the two attractor-based approaches to
be perhaps more sensitive to coupling, as they are
appropriate for use with nonlinear systems, whereas
cross-correlation is not guaranteed to work well with
such systems. As discussed above, we also expected the
system to exhibit an asymmetric flow of information,
which we expected to be detectable with the two
attractor-based methods and not with cross-correlation.
Using a finite difference scheme, Eqs. (9) were

integrated for N ¼ 10; 000 time steps (post-transient)
with a dimensionless sampling time of 0.5. The
dominant frequency for this system is � 0:065 cycles
per unit time so that this sampling rate was deemed
sufficient to capture the dynamics. Simulations were
performed on a spatial grid consisting of 100 sites,
distributed evenly on x 2 ½0; 1�: Three different resource
slopes were used f ¼ 0:9; 1:4; 1:9 in order to study the
effects of the resource gradient on the resulting spatial
coupling. Prior to the analysis all time series were
normalized by subtracting their mean and dividing by
the standard deviation. Simple changes in population
mean and/or variance are therefore removed from
consideration here. The analysis of coupling focused
on the relationship between predator/prey density at one
site and predator/prey density at the same or another
site. The attractor at a given location x may therefore be
defined in terms of the predator and prey populations at
that site as X ¼ ððpxðnÞ; hxðnÞÞ; n ¼ 1; . . . ;N:
For each of the approaches described in Section 2,

comparisons were made using data recorded at locations
x ¼ 0:01; 0:05; . . . ; 1:0 resulting in the 20� 20 cross-
correlation, continuity and mutual prediction matrices
gR

xx0 ; g
C
xx0 ; g

M
xx0 ; x;x0 2 ½0; 1�: In an effort to place the three

metrics on the same general scale, we take 1:0� gR
xx0 as

the measure of cross-correlation. Under this transfor-
mation, continuity, mutual prediction and cross-correla-
tion metrics near zero indicate strong coupling, whereas
values near unity are indicative of weak coupling.
Fig. 5 shows the cross-correlation, continuity, and

mutual prediction statistics reflecting coupling between
the data for predator/prey density at one site and
predator/prey density at another site. All metrics show
the strongest evidence of coupling on the diagonal, as
expected. Population dynamics at nearby locations are
more likely to be strongly coupled than those with a
large separation. As the pair of sites being analyzed
become more distant, all measures show a degradation
in the coupling. However, unlike correlation, continuity
and prediction error clearly show the asymmetry
associated with the flow of animals and information
along the resource gradient. For the f ¼ 0:9 case the
system dynamics are strongly coupled over most
distances. The dynamics at most of the lattice sites are
confined to near-periodic behavior as illustrated in
Fig. 4, resulting in strong continuity and predictability.
Continuity strongly resembles autocorrelation but is
clearly capable of resolving differences in the coupling
direction. Source values taken near the high-resource
end of the system ðx ¼ 0Þ tend to require large � values
when being compared with time series at the low-
resource end ðx ¼ 1Þ: However, reversing the source/
target relationship reveals a different pattern. Taking
source values near x ¼ 1 shows stronger continuity
when compared to targets at the high-resource end.
Cross-correlation, on the other hand, cannot by defini-
tion resolve these differences. Results obtained using
mutual prediction show similar asymmetries with one
important difference. Comparing extremely low vs.
extremely high lattice sites can actually result in
excellent mutual predictability. Again this can be seen
in part by analyzing the attractors observed at these
sites. Due to the boundary conditions, attractors near
x ¼ 0 and 1 possess similar geometry, hence, tend to
have good mutual predictability. Results using the
mutual prediction algorithm were based on � ¼ 0:025
however we note that similar results were obtained for �
in the range 0:01p�p0:1:
Results for the f ¼ 1:4 resource gradient are shown in

the second column. These data correspond to the
gradient analyzed in Pascual’s original paper using this
model (Pascual, 1993). For all metrics used the region of
strong coupling decreases relative to the previous
gradient. Essentially a steeper resource gradient will
result in more dissimilar dynamics across the lattice
sites. Again, continuity and mutual prediction detect the
effects of the gradient. Both continuity and mutual
prediction indicate a stronger coupling examining the
relationship from low-resource to high-resource areas
then in going from high to low. This is consistent with
results for f ¼ 0:9: This particular directionality implies
that dynamics nearer the high-resource end have a
greater effect on those at the low-resource end than vice
versa. Essentially, the gradient results in higher popula-
tions at the high-resource end. Consequently, through
the nature of diffusive coupling (alluded to in Section 3),
those dynamics have more influence on those occurring
at sites with smaller (on average) populations. Con-
versely, dynamics at high-resource sites are not strongly
influenced by movement from low-resource sites. For
the most part, continuity and mutual prediction show
similar features with one notable exceptions. Results
based on mutual prediction show much sharper
gradients in transitioning from regions of low to high
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Fig. 5. Top row: cross-correlation ð1:0� gxx0 Þ; middle row: continuity, and bottom row: Mutual prediction for f ¼ 0:9; 1:4; 1:9:
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predictability. This is a result of the way in which
‘‘sparse’’ neighborhoods are dealt with. By predicting
the mean when no near neighbors are found, the
transition from similar to dissimilar geometries is
sudden in terms of the resulting prediction error.
The final set of observations corresponds to f ¼ 1:9:

Again, there exists a stronger functional relationship in
the direction of decreasing resource than in the other
direction. Both continuity and mutual prediction show
very pronounced asymmetries in the coupling direction.
Information about sites near x ¼ 0 is available to sites
near x ¼ 1; but not vice versa. Therefore, sites near x ¼

1 possess more of the global system information and can
therefore more accurately describe distant dynamics.
The reverse is not true. The dynamics at sites near x ¼ 0
are influenced to a much lesser degree by the dynamics
at other locations and therefore fail in trying to describe
those dynamics. The cross-correlation metric is unable
to detect the asymmetry and shows identical correlations
regardless of which site is considered the ‘‘base’’ site.
The correlation coefficient gives what is essentially the
worst-case scenario. Because of the symmetry in
the computation of this coefficient, regions of poor
uni-directional coupling will appear as regions of poor
bi-directional coupling.
One useful property of the correlation analysis as

presented here, however, is that it only requires one of
the state variables (in this case we used p) to be recorded.
The attractor-based approaches, on the other hand,
involve measurements of both prey and predator



ARTICLE IN PRESS
J.M. Nichols et al. / Theoretical Population Biology 67 (2005) 9–2118
dynamics to form the attractors at the various lattice
sites. This could conceivably give cross-correlation a
practical advantage in such an analysis. However,
according to the embedding theorems, measurements
of a single variable can be used to qualitatively
reconstruct the other provided that they are somehow
coupled through common system dynamics. In this case
the coupling is explicitly dictated by the parameter ‘‘a’’.
In order to illustrate the utility of attractor-based
approaches for meta-population systems in which
animals at different sites are coupled through move-
ments of individuals of the same species, we repeated the
mutual prediction and continuity algorithms using only
the observation pðnÞ to form the attractor

X ¼ ðpðnÞ; pðn þ TÞ; pðn þ 2TÞÞ;
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where the optimal delay was chosen based on the mutual
information function as T ¼ 7 time steps. The embed-
ding dimension was chosen as m ¼ 3 based on the
aforementioned false-nearest neighbors algorithm. Re-
sults using the attractor reconstruction for f ¼ 1:4
are shown in Fig. 6 for both mutual prediction and
the continuity statistic. These results are similar to those
found using both observations of p and h to form the
attractors. The continuity metric gives nearly identical
results using the delay coordinate approach as it does
when one has access to each of the state variables. The
one apparent difference is that using delay coordinates,
the magnitude of the continuity metric increases. This
can be explained in terms of the number of data, N, in
the recorded time series. In the previous approach we
had access to N ¼ 10; 000 points for each of the two
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measured variables comprising our attractor (10,000
points per dimension). By contrast, the delay coordinate
approach ‘‘dilutes’’ the data in that we now have 10,000
points (only 1 time series) spread into three dimensions,
giving 3333 data points per dimension. As a result the
data have a greater spread and the average � increases.
Mutual prediction suffers from this same effect. As

before, there exists a clear asymmetry in the direction-
ality of the predictions, that is, attractors reconstructed
from lattice sites near x ¼ 1 do a better job at predicting
those near x ¼ 0 than vice versa. However some of the
detail is lost, for example, lattice sites near x ¼ 65 are no
longer able to make accurate forecasts for the dynamics
at other locations. The main point to make here is that
much of the relevant dynamical information is con-
tained in a single variable. While it is advantageous to
form attractors using measurements of as many state
variables as possible, pertinent information such as the
asymmetry in population flow can be preserved with
only a single measurement.
Another important question deals with the size of the

data set under consideration. Even long time series of
ecological data are limited to a few hundred or possibly
1000 points. In order to test the performance of these
algorithms on limited data, the analysis was repeated
using 1000 observations of the system dynamics.
Attractors were again formed using both predator and
prey variables and both continuity and mutual predic-
tion algorithms were employed for the analysis. The
results are shown in Fig. 7. Both sets of results clearly
demonstrate an ability to detect the asymmetry in
spatial information flow using both mutual prediction
and continuity statistics. Due to the limited number of
data the search radius for the mutual prediction
algorithm was increased to � ¼ 0:05: Qualitatively few
differences exist between these results and those
obtained using 10,000 point time series. For this
particular system, 1000 points are sufficient for populat-
ing the attractors such that the coupling between various
spatial locations can still be observed. For shorter data
sets the practitioner will likely have to alter the
algorithms slightly. For example, the prediction error
algorithm selects all points within a radius � and makes
the forecast assuming equal weighting ð1=n�Þ for all
points. More intelligent weighting schemes have been
proposed (Little et al., 1996) that may make better use of
limited data. Another possibility is to make use of kernel
density estimation techniques (see Silverman, 1986).
Rather than simply counting points in an �-ball, one
may weight them according to their distance from the
fiducial trajectory. Parametric or semi-parametric ap-
proaches may also prove useful when there exists some a
priori knowledge of the distribution of the underlying
populations. Drawing inferences about asymmetry from
short and/or noisy time series may also require the use
of surrogate data sets (Theiler et al., 1992). Metrics
computed from the population time series could be
compared against those obtained for the surrogates
(where no coupling exists) in order to better assess the
significance of the result.
5. Conclusions

Both mutual prediction and the continuity statistics
provided useful inferences about dynamical interdepen-
dence (coupling) for this spatially distributed predator–
prey system. Cross-correlation also provided evidence of
coupling, although we emphasize that cross-correlation
is not guaranteed to perform well with nonlinear
systems. Perhaps more important, mutual prediction
and continuity clearly indicated the asymmetric flow
of information and, thus, the directional nature of
the coupling in this system with a spatial gradient.
Cross-correlation provides no information about such
asymmetries.
Asymmetric movement of animals is a topic of great

interest in the study of spatial systems. For example, the
concept of source–sink populations provides an extreme
example of asymmetric movement in which source
populations may contribute to sinks, but there is no
movement in the opposite direction (Pulliam, 1988).
Identification of sources and sinks is not only of
theoretical interest but is very important to conserva-
tion. Sink habitat may show large abundances of
animals at times, so abundance is not a reliable indicator
of habitat quality (Horne, 1983). Additional informa-
tion about coupling is needed to make informed
decisions about relative efforts devoted to protection
of different habitats. Models for the evolution of
dispersal frequently predict different rates of movement
(inducing coupling asymmetries) among population
components with different suitabilities and abundances.
Hypotheses and associated models of habitat selection
predict asymmetric movement based on gradients
among locations in expected fitness (Fretwell and Lucas,
1970; Fretwell, 1972; Nichols and Kendall, 1995).
As illustrated by our example of a predator–prey

system, continuity and mutual prediction also should be
useful in identifying asymmetries in the coupling of food
web components. In fact, these metrics should be useful
in distinguishing ‘‘top-down’’ and ‘‘bottom-up’’ popula-
tion regulation (Harrison and Cappuccino, 1995;
Turchin, 1995), as these concepts can be viewed as
manifestations of asymmetric coupling. Indeed, con-
sideration of the mechanisms underlying dynamical
interdependence in ecological systems leads us to
hypothesize that asymmetric coupling may be much
more common in such systems than symmetric coupling.
The continuity and mutual prediction algorithms
described herein provide tools that permit investigation
of this hypothesis using time-series data.
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In addition to theoretical and conservation impor-
tance of asymmetries in dynamical interdependence,
such asymmetries should be extremely relevant to the
informed design of animal monitoring programs. One of
the two central problems in the design of such programs
involves sampling space in a manner that permits
inference about locations that are not sampled (Yoccoz
et al., 2001; Pollock et al., 2002). Because continuity and
mutual information permit inference about asymmetries
in the flow of information, they should permit informed
selection of sample locations. For example, in large
spatial systems with varying degrees of coupling among
potential sample units, it should be possible to select
units that are maximally informative about dynamics of
either the entire system or specific system components.
Although both continuity and mutual prediction

provide inference about asymmetric coupling, the two
approaches do not yield identical inferences. Although
coupling can be detected by both approaches, we
suspect that continuity may be the approach of choice
if the detection of dynamical interdependence is of
primary interest. An alternative objective will be to use
information from an observed system component to
make predictions about another system component, or
the same component at a future time, in which case the
prediction metric may be utilized.
In summary, we believe that continuity and mutual

prediction hold great promise for the study of complex
ecological systems, but we note that additional work is
still needed. In particular, the length of the time series
necessary for these approaches to yield useful results
requires further investigation. While we have demon-
strated success using data sets as small as 1000 points,
further refinements in the algorithms could extend their
applicability to even shorter time series. In addition,
sampling variation is nearly always associated with
estimates of the state variables of ecological systems
(e.g., Williams et al., 2002). The results reported in this
paper are based on long time series without sampling
variation (measurement error). The next step is to
investigate shorter time series of estimates with mea-
surement error in order assess the limits to the utility of
these methods for real-world ecological systems.
Acknowledgments

We thank Stephen Ellner (Cornell University) for
insightful comments on an early version of this paper.
References

Bjørnstad, O., Grenfell, B., 2001. Noisy clockwork: time series analysis

of population fluctuations in animals. Science 293, 638–643.
Bjørnstad, O., Ims, R., Lambin, X., 1999a. Spatial population

dynamics: analyzing patterns and processes of population syn-

chrony. Trends Ecol. Evol. 14, 427–432.

Bjørnstad, O., Stenseth, N., Saitoh, T., 1999b. Synchrony and scaling

in dynamics of voles and mice in northern Japan. Ecology 80,

622.

Blums, P., Nichols, J., Lindberg, M., Hines, J., Mednis, A., 2003.

Estimating breeding dispersal movement rates of adult female

European ducks with multistate modeling. J. Anim. Ecol. 72,

292–307.

Clobert, J., Danchin, E., Dhondt, A., Nichols, J., 2001. Dispersal.

Oxford University Press, Oxford.

Constantino, R., Cushing, J., Dennis, B., Desharnais, R., 1995.

Experimentally induced transitions in the dynamic behaviour of

insect populations. Nature 375, 227–230.

Constantino, R.F., Desharnais, R.A., Cushing, J.M., Dennis, B., 1997.

Chaotic dynamics in an insect population. Science 275, 389–391.

Dennis, B., Desharnais, R., Cushing, J., Constantino, R., 1995.

Nonlineardemographic dynamics: mathematical models, statistical

methods, and biological experiments. Ecol. Monogr. 65, 261–281.

Dennis, B., Desharnais, R., Cushing, J., Constantino, R., 1997.

Transitions in population dynamics: equilibria to periodic cycles to

aperiodic cycles. J. Anim. Ecol. 66, 704–729.

Dieckmann, U., Law, R., Metz, J., 2000. The Geometry of Ecological

Interactions: Simplifying Spatial Complexity. Cambridge Univer-

sity Press, Cambridge.

Durrett, R., Levin, S., 1998. Spatial aspects of interspecific competi-

tion. Theor. Popul. Biol. 53, 30–43.

Fraser, A.M., Swinney, H.L., 1986. Independent coordinates for

strange attractors from mutual information. Phys. Rev. A 33,

1134–1140.

Fretwell, S.D., 1972. Populations in a Seasonal Environment.

Princeton University Press, Princeton, NJ.

Fretwell, S.D., Lucas, H.L., 1970. On territorial behavior and other

factors influencing habitat distribution in birds. i. theoretical

development. Acta Biotheor. 19, 16–36.

Harrison, S., Cappuccino, N., 1995. Using density-manipulation

experiments to study population regulation. In: Cappuccino, N.,

Price, P.W. (Eds.), Population Dynamics: New Approaches and

Synthesis. Academic Press, New York, pp. 131–147.

Hastings, A., 2001. Transient dynamics and persistence of ecological

systems. Ecol. Lett. 4, 215–220.

Hastings, A., Hom, C., Ellner, S., Turchin, P., Godfray, H., 1993.

Chaos in ecology: is mother nature a strange attractor? Ann. Rev.

Ecol. Syst. 24, 1–33.

Horne, B.V., 1983. Density as a misleading indicator of habitat

quality. J. Wildlife Manag. 47, 893–901.

Kantz, H., Schreiber, T., 1999. Nonlinear Time Series Analysis.

Cambridge University Press, Cambridge.

Karanth, K., Sunquist, M., 1995. Prey selection by tiger, leopard and

dhole in tropical forests. J. Anim. Ecol. 64, 439–450.

Keeling, M.J., Rohani, P., 2002. Estimating spatial coupling in

epidemiological systems: a mechanistic approach. Ecol. Lett. 5,

20–29.

Kennel, M.B., Brown, R., Abarbanel, H.D.I., 1992. Determining

embedding dimension for phase-space reconstruction using a

geometrical construction. Phys. Rev. A 45 (6), 3403–3411.

Koenig, W., 1999. Spatial autocorrelation of ecological phenomena.

Trends Ecol. Evol. 14, 22–26.

Korpimaki, E., Krebs, C., 1996. Predation and population cycles of

small mammals. BioScience 46, 754–764.

Krebs, C., Boutin, S., Boonstra, R., Sinclair, A., Smith, J., Dale, M.,

Martin, K., Turkington, R., 1995. Impact of food and predation on

the snowshoe hare cycle. Science 269, 1112–1115.

Little, S., Ellner, S., Pascual, M., Neubert, M., Kaplan, D., Sauer, T.,

Caswell, H., Solow, A., 1996. Detecting nonlinear dynamics in



ARTICLE IN PRESS
J.M. Nichols et al. / Theoretical Population Biology 67 (2005) 9–21 21
spatio-temporal systems, examples from ecological models. Physica

D 96, 321–333.

Moniz, L., Pecora, L.M., Nichols, J.M., Todd, M.D., Wait, J.R., 2004.

Dynamical assessment of structural damage using the continuity

statistic. Structural Health Monitoring 3 (3), 199–212.

Nichols, J.D., Kendall, W., 1995. The use of multistate capture–

recapture models to address questions in evolutionary ecology.

J. Appl. Stat. 22, 835–846.

Ott, W., Yorke, J., 2003. Learning about reality from observation.

SIAM Online J. Dyn. Sys. 2 (3), 297–322.

Pascual, M., 1993. Diffusion-induced chaos in a spatial predator–prey

system. Proc. Roy. Soc. Lond. B 251, 1–7.

Pascual, M., Ellner, S., 2000. Linking ecological patterns to environ-

mental forcing via nonlinear time series models. Ecology 81 (10),

2767–2780.

Pascual, M., Levin, S.A., 1999. From individuals to population

densities: searching for the intermediate scale of nontrivial

determinism. Ecology 80 (7), 2225–2236.

Pecora, L., Carroll, T., Heagy, J., 1995. Statistics for mathematical

properties of maps between time-series embeddings. Phys. Rev. E

52 (4), 3420–3439.

Pecora, L.M., Carroll, T.L., 1996. Discontinuous and nondifferenti-

able functions and dimension increase induced by filtering chaotic

data. CHAOS 6 (3), 432–439.

Pollock, K.H., Nichols, J.D., Simons, T.R., Farnsworth, G.L., Bailey,

L., Sauer, J., 2002. Large scale wildlife monitoring studies:

statistical methods for design and analysis. Environmetrics 13,

1–15.

Post, E., Forchhammer, M.C., 2002. Synchronization of animal

population dynamics by large-scale climate. Nature 420, 168–171.

Pulliam, H.R., 1988. Sources, sinks, and population regulation. Am.

Nat. 132, 652–661.

Ranta, E., Kaitala, V., Lundberg, P., 1997. Population variability in

space and time: the dynamics of synchronous population fluctua-

tions. Oikos 83, 376–382.

Rhodes, O., Chesser, R., Smith, M. (Eds.), 1996. Population Dynamics

in Ecological Space and Time. University of Chicago Press, Chicago.

Sauer, T., Yorke, J.A., Casdagli, M., 1991. Embedology. J. Stat. Phys.

65, 579.
Schaffer, W., 1985. Order and chaos in ecological systems. Ecology 66,

93–106.

Schaffer, W., Kot, M., 1986. Chaos in ecological systems: the coals

that newcastle forgot. Trends Ecol. Evol. 1, 58–63.

Schiff, S.J., So, P., Chang, T., Burke, R.E., Sauer, T., 1996. Detecting

dynamical interdependence and generalized synchrony through

mutual prediction in a neural ensemble. Phys. Rev. E 54 (6),

6708–6724.

Silverman, B.W., 1986. Density Estimation for Statistics and Data

Analysis. Chapman & Hall, London.

Spendelow, J., Nichols, J., Nisbet, I., Hays, H., Cormons, G., Burger,

J., Safina, C., Hines, J., Gochfeld, M., 1995. Estimating annual

survival and movement rates within a metapopulation of roseate

terns. Ecology 76, 2415–2428.

Takens, F., 1981. Detecting strange attractors in turbulence. In: Rand,

D., Young, L.-S. (Eds.), Dynamical Systems and Turbulence,

Lecture Notes in Mathematics, vol. 898. Springer, New York,

pp. 366–381.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.D.,

1992. Testing for nonlinearity in time-series—the method of

surrogate data. Physica D 58 (1–4), 77–94.

Tobin, P.C., Bjørnstad, O.N., 2003. Spatial dynamics and cross-

correlation in a transient predator–prey system. J. Anim. Ecol. 72

(3), 46–467.

Turchin, P., 1995. Population regulation: old arguments and a new

synthesis. In: Cappuccino, N., Price, P.W. (Eds.), Population

Dynamics: New Approaches and Synthesis. Academic Press,

New York, pp. 19–40.

Webster, M., Marra, P., Haig, S., Bensch, S., Holmes, R., 2002. Links

between worlds: unraveling migratory connectivity. Trends Ecol.

Evol. 17, 76–83.

Whitney, H., 1936. Differentiable manifilds. Ann. Math. 37, 645.

Williams, B.K., Nichols, J.D., Conroy, M., 2002. Analysis and

Management of Animal Populations. Academic Press, San Diego.

Williams, G.P., 1997. Chaos Theory Tamed. Joseph Henry Press,

Washington, DC.

Yoccoz, N.G., Nichols, J.D., Boulinier, T., 2001. Monitoring of

biological diversity of biological diversity in space and time. Trends

Ecol. Evol. 16, 446–453.


	Assessing spatial coupling in complex population dynamics using mutual prediction and continuity statistics
	Introduction
	Time-series analysis for inference about coupling
	Cross-correlation analysis
	Attractor-based methods: review of phase space analysis
	Attractor-based methods: continuity
	Attractor-based methods: mutual prediction

	Numerical model
	Application of approaches to assessment of coupling
	Conclusions
	Acknowledgments
	References


