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Interpretive summary: Johne’s Disease Diagnostic Data. Wang 1 

A new Bayesian statistical model was developed to evaluate the performance of milk 2 

ELISA and fecal culture tests for longitudinal Johne‘s Disease data in the absence of a gold 3 

standard diagnostic test. Data from a Danish longitudinal study from January 2000 to March 4 

2003 were analyzed using the proposed method. Based on the Bayesian approach, the posterior 5 

probability distribution of the infection onset time could be obtained and used as a criterion for 6 

disease infection diagnosis. The posterior probability criterion was superior to the raw single 7 

reading ELISA and fecal culture tests for Johne‘s Disease diagnosis. 8 

LONGITUDINAL DIAGNOSIS OF JOHNE‖S 9 
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Bayesian analysis of longitudinal Johne’s disease diagnostic data without a gold standard 11 
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ABSTRACT 1 

 A Bayesian methodology was developed based on a latent change-point model to 2 

evaluate the performance of milk ELISA and fecal culture tests for longitudinal Johne‘s Disease 3 

diagnostic data. The situation where there is no perfect reference test was considered, i.e., no 4 

―gold standard‖. A change-point process with a Weibull survival hazard function was used to 5 

model the progression of the hidden disease status. The model adjusted for the fixed effects of 6 

covariate variables and random effects of subject on the diagnostic testing procedure. Markov 7 

chain Monte Carlo methods were used to compute the posterior estimates of the model 8 

parameters that provide the basis for inference concerning the accuracy of the diagnostic 9 

procedure. Based on the Bayesian approach, the posterior probability distribution of the change-10 

point onset time can be obtained and used as a criterion for infection diagnosis. An application is 11 

presented to an analysis of ELISA and fecal culture test outcomes in the diagnostic testing of 12 

paratuberculosis (Johne‘s Disease) for a Danish longitudinal study from January 2000 to March 13 

2003. The posterior probability criterion based on the Bayesian model with 4 repeated 14 

observations has an area under the receiver operating characteristic curve (AUC) of 0.984, and is 15 

superior to the raw ELISA (AUC = 0.911) and fecal culture (Sensitivity = 0.358 , specificity = 16 

0.980) tests for Johne‘s Disease diagnosis. 17 

Key words: Johne‘s disease, longitudinal, ROC curve, no Gold Standard 18 
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INTRODUCTION 1 

This study was motivated by the need for accurate diagnostic tests of bovine 2 

paratuberculosis (Johne‘s disease), which is a major animal health problem (Rideout et al., 3 

2003). Control of Johne‘s disease has been difficult due to lack of accurate diagnostic tests 4 

(Nielsen and Toft, 2008). Diagnostic tests for Johne‘s disease such as milk antibody ELISA and 5 

fecal culture (FC) are known to be imperfect. It is less straightforward to evaluate the 6 

performances of these existing imperfect tests when no gold standard (GS) tests are available for 7 

comparison.  8 

For binary outcome test data, sensitivity (probability of a positive outcome in an infected 9 

individual) and specificity (probability of a negative outcome in a non-infected individual) are 10 

used to assess the test accuracy. To assess the accuracy of an ordinal or continuous-scaled 11 

diagnostic procedure, it is useful to consider the receiver operating characteristic (ROC) curve, 12 

which is a graph of pairs of sensitivity and 1-specificity values that result as the test‘s threshold 13 

value is varied. The area under the ROC curve (AUC) is a  measure of the overall diagnostic 14 

ability of the test. Principles of ROC curve estimation using parametric and nonparametric 15 

methods are well reviewed in Pepe (2003) and Krzanowski and Hand (2009). Traditional 16 

diagnostic test evaluation assumes the existence of a GS reference test that has perfect sensitivity 17 

and specificity. 18 

In the absence of a perfect reference test, Hui and Walter (1980) developed a maximum 19 

likelihood method to estimate the sensitivity and specificity of 2 imperfect binary tests. For 20 

ordinal or continuous outcome test data, construction of an ROC curve requires all possible pairs 21 

of sensitivity and 1-specificity values to be estimated. When no GS test but only an imperfect 22 

binary test was available for comparison, Nielsen et al. (2002a) estimated these pairs separately 23 
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using the method of Hui and Walter (1980) based on paratuberculosis data. Wang et al. (2007) 1 

developed a Bayesian methodology for nonparametric estimation of ROC curves in the same 2 

situation as that of Nielsen et al. (2002a), and assures the natural monotonicity property of the 3 

ROC curve. For the situation where the test values (or transformed test values) of both infected 4 

and non-infected individuals have continuous normal distributions, Choi et al. (2006) proposed a 5 

Bayesian method for estimating an ROC curve when there is no GS test. When covariate 6 

information is available, it can be used to increase the effectiveness of continuous markers in 7 

distinguishing between uninfected and infected subjects; Pepe (2003, Chapter 6) discussed 8 

covariate effects on tests and the need to identify them. Wang et al. (2006) proposed a 2-part 9 

statistical model to adjust the ROC curve estimates for covariates without GS tests. 10 

All the above methods focus on cross-sectional studies, where the hidden infection 11 

statuses are usually assumed independent across observations. Besides cross-sectional studies, 12 

there have been longitudinal studies to understand the ability of the diagnostic tests to predict 13 

Johne‘s disease in dairy cows (Nielsen and Toft, 2006; Sweeney et al., 2006). The ROC analysis 14 

incorporating the time dimension was discussed in Pepe (2003, Chapter 9.2). Norris et al. (2009) 15 

proposed estimating ROC curves without a GS test for longitudinal studies by using a change-16 

point model, in which the time to change-point was modeled conditional on unknown infection 17 

status. There is no statistical methodology currently available to adjust ROC curves for covariate 18 

effects without a GS test. Thus, the first objective was to estimate the ROC curve of a 19 

continuous-scaled diagnostic without a perfect reference test and adjust for covariate effects 20 

based on longitudinal data. 21 

Another objective of longitudinal studies is to improve the diagnosis of infection onset 22 

(change-point) by using repeated observations. A latent class model with the change-point 23 
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estimated by Bayesian methods is appealing because the posterior distribution can provide a 1 

direct answer to the question: what is the probability that the change-point has occurred? Lange 2 

et al. (1992), Gulyas (1998), and Slate and Turnbull (2000)  utilized Bayesian change-point 3 

models to analyze longitudinal disease diagnostic data. The methods of Cronin (1995), Gulyas 4 

(1998) and Slate and Turnbull (2000) all lead to a dynamic index based on the posterior 5 

probability that change-point has occurred by the current time in an individual subject. All 6 

results in this paragraph were based on the presence of a GS test.  7 

In this paper, a parametric model was proposed with change-points to estimate the ROC 8 

curve of a diagnostic test for longitudinal data.  9 

MATERIALS AND METHODS 10 

Statistical Model Structure 11 

A statistical methodology was proposed for assessing the accuracy of the continuous-12 

scaled test (Test 1) by comparing it with the imperfect binary reference test (Test 2) for 13 

longitudinal data. In the application in the Johne‘s disease study, as discussed in the Introduction, 14 

Test 1 is the ELISA and Test 2 the FC test. The covariate effects were corrected so as to avoid a 15 

biased estimate of test accuracy. The covariates for one individual may vary over time. 16 

Parametric Models for Test Outcomes Given Infection Status. Suppose there is a 17 

sample of n individuals. As a general and realistic setting, the 2 tests, Test 1 and Test 2, are not 18 

necessarily taken always at the same times. So suppose for the ith individual (i = 1, . . . , n), there 19 

are li time points ti,1, ti,2, . . . , ti,li where at least 1 of the 2 diagnostic tests are taken. Suppose the 20 

Test 1 scores are observed at times { iji Mjt ;, } and the reference Test 2 scores are observed at 21 

times {
*

, ; iji Mjt  }, where iM  and *

iM  are the sets of indices for Test 1 and Test 2, 22 

respectively. For the ith individual and jth observation, let Di,j (= 0, negative; or 1, positive) 23 
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denote the true unknown infection status, Ti,j denote the value of Test 1, measured on a 1 

continuous scale, possibly transformed, and let Ri,j ( = 0, negative; or 1, positive) denote the 2 

diagnostic value of Reference Test 2, which is measured on a binary scale. We assume the 2 tests 3 

are conditionally independent, i.e., Ti,j and Ri,j are independent given infection status Di,j. 4 

For the jth observation of the ith individual, we  have K measured covariates Zi,j,1, . . . , 5 

Zi,j,K, which could affect the Test 1 scores given the infection status. To model the effects of the 6 

covariates on the Test 1 scores given infection status, we use a linear mixed effect model for the 7 

Test 1 scores: 8 

jiiKjiKjijiDji ZZDT ,,,1,,1,0,    .           [1] 9 

Here β0, βD, β1, . . . , βK are the unknown regression coefficients for the mean of Ti,j, γi 10 

denotes the random effect of the ith cow on Ti,j, and εi,j denotes the observation level random 11 

variation. In the analysis, we assume γi and εi,j to be normally distributed with variances σg
2 

and 12 

σ
2
, respectively. This is not essential to the method; however, other distributional assumptions 13 

can be made.  14 

For the imperfect binary reference Test 2, the natural misclassification model for the 15 

diagnostic values is {Ri,j: i = 1, . . . , n; *

iMj }: 16 

)1|( ,, jiji DR    ~   )-1 , 1 ( 1Bin  17 

)0|( ,, jiji DR   ~      ) , 1 ( 0Bin , 18 

where α0 and α1 are, respectively, the false positive probability and the false negative probability 19 

for Test 2. These parameters are unknown and will be estimated along with the parameters of the 20 

Test 1 model. 21 

Latent Class Model to Detect Health Status Change-points. A change-point model is 22 

proposed for the progression of the infection status {Di,j: i = 1, . . . , n; j = 1, . . . , li }. Let Oi be 23 
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the infection onset time for the ith cow, i.e., the time when the infection status changes from 1 

uninfected to infected. The latent infection state Di,j is determined by the visit time ti,j and 2 

change-point onset times Oi by 3 










iji

iji

ji Ot

Ot
D

,

,

,           if          1

          if          0
. 4 

Of course the latent infection onset time Oi is not observed. A Weibull survival 5 

distribution model is proposed for Oi 6 

iO    ~   ), ( Weibull , 7 

where ρ is the shape parameter and λ is the scale parameter. Here no covariate effects on the 8 

infection process model are considered for the analysis of Johne‘s disease. This is because the 9 

covariate milk yield may vary depending on the disease process other than affecting disease 10 

status, whereas the covariate age is equivalent to time. 11 

Parametric Model for response covariates. To study the relationship between covariates 12 

and the infection process, 2 types of covariates were considered: the explanatory covariates (e.g., 13 

age) which could affect the hidden infection process and other variables; and the response 14 

covariates (e.g., milk yield), which can not affect the hidden infection process, but may vary 15 

depending on the infection status and the other covariates. Assume there are K1 explanatory 16 

covariates, and denote them by X

jiZ 1,, , . . . , 
X

KjiZ
1,, ; and assume there are K2 response covariates, 17 

and denote them by Y

jiZ 1,, , . . . , Y

KjiZ
2,, . 18 

The distribution of the response covariate 
Y

kjiZ ,,  (k = 1, …, K2) was modeled by 19 

Y

kji

Y

ki

X

KjiKk

X

jikjiDkk

Y

kji ZZDZ ,,,,,,1,,1,,,0,,, 11
   ,  [2] 20 
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where 0,k , Dk , , 1,k , . . . , 
1,Kk are the unknown regression coefficients for the mean of Y

kjiZ ,, , 1 

Y

ki ,  is the random effect of the ith cow on the kth response covariate, and Y

kji ,,  is the observation 2 

level random variation. Here Y

ki , and Y

kji ,,  are assumed to have normal distributions with 3 

variances τg
2 

and τ
2
, respectively. Again, these distributional assumptions are not essential to the 4 

method and other distributions can be used if applicable.  5 

The Bayesian Approach and Markov Chain Monte Carlo Method 6 

The parameters were estimated in the model by using Bayesian methods. Independent 7 

prior distributions were used for the model parameters. Specifically, it is assumed normal N(0, 8 

10000) for each of β0, βD, β1, . . . , βK, 0,k , Dk , , 1,k , . . . , 
1,Kk ; Gamma(0.01, 0.01) for σg

-2 
, σ

-
9 

2
, τg

-2 
, τ

-2
, 

 
ρ, and λ; and Beta(0.5, 0.5) for α0 and α1. These priors are used as noninformative 10 

priors. Instead, informative priors could be used if previous knowledge is available for any of the 11 

parameters. 12 

Based on the prior distributions and the likelihood of the observed data {Ti,j: i = 1, . . . , n; 13 

iMj }, {Ri,j: i = 1, . . . , n; *

iMj }, the posterior distribution of the parameters together with 14 

change-point times {Oi : i = 1, . . . , n} can be simulated by using Markov chain Monte Carlo 15 

(MCMC) methods (Robert and Casella, 2004). The simulation of posterior distributions was 16 

implemented by calling WinBUGS (Lunn et al., 2000) from R statistical software (R 17 

Development Core Team, 2010) using the R2WinBUGS (Sturtz et al., 2005) package. 18 

Application to a Longitudinal Study of Johne’s Disease 19 

The method was applied to a longitudinal study that was performed to describe the 20 

probability of bacterial shedding of Johne‘s disease in feces and the antibody response as a 21 
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function of age. The sample population consisted of all cows present in 8 Danish dairy herds at 1 

any given time point in the study period, from January 2000 to March 2003. 2 

All herds were infected with Johne‘s disease. During the period, milk samples were 3 

obtained from all lactating cows in the herds 11 times per year via the Danish milk recording 4 

system. Cows which were not lactating did not contribute milk samples on a given sampling 5 

date. Four times per year, fecal samples were collected from all cows in the herds, both lactating 6 

and non-lactating. In the study period of approximately 3 yr, repeated sampling of milk (23,265 7 

samples) and feces (8,816 samples) was performed. A total of 1,997 Danish dairy cows provided 8 

material. The milk samples were analyzed for antibodies specific to Mycobacterium avium 9 

subsp. paratuberculosis (MAP) using an in-house ELISA, and the fecal samples were analyzed 10 

for MAP by FC and dichotomized as positive or negative. The in-house ELISA was an M. phlei 11 

absorbed ELISA based on M. a. avium. The FC method was based on decontamination and 12 

centrifugation followed by incubation on Herrold‘s Egg Yolk Medium for 12 wk. Positive 13 

cultures from FC were confirmed as MAP using IS900 PCR.  Both methods are described in 14 

detail in Nielsen and Toft (2006). 15 

Data Modification. There were rapid increases and decreases of ELISA values at the 16 

beginning and end of lactation. To avoid unnecessary complexity of the modeling, the 17 

observations with DIM < 15 or DIM > 305 were excluded from the data analysis. After 18 

modification and before analysis, a log-transformation was applied to account for the skewness 19 

of the reading distribution and because the variance of the corrected optical density (OD) values 20 

increases with increasing mean values. 21 

After data modification, 1,766 cows with both ELISA and FC tests were included in the 22 

analysis. A total of 18,966 ELISA test outcomes and 6,712 fecal culture test outcomes taken at 23 
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25,356 observation times (days) were used in the analysis. Among these, there were 18,644 1 

observation times with only ELISA outcomes, 6,390 observation times with only fecal culture 2 

outcomes, and 322 observation times when both tests were performed. 3 

Trajectories were plotted of log-transformed ELISA OD score vs. age for 20 randomly 4 

selected cows within age interval 3 to 5 yr in Figure 1. Ten of these cows had at least 1 FC 5 

positive outcome in the age interval, and the other 10 cows never had FC positive outcome in the 6 

age interval. 7 

Johne’s Disease Model Structure. Here the covariates milk yield (kg) and age (yr) were 8 

included in this analysis. Both milk yield and age were related to the ELISA test scores, as has 9 

been reported by Nielsen et al. (2002b), van Schaik et al. (2003) and Nielsen and Toft (2006). 10 

Thus, the effects of the covariates milk yield  and age  were fit in the regression model as 11 

explanatory variables for ELISA test score. The relationships between Johne‘s disease and these 12 

variables have been studied by Kudahl et al. (2004). As age is related to time, the effect of age 13 

has been accounted for in the hidden longitudinal model for infection process. It has been 14 

reported that infected cows are associated with decreased milk yield values (Stabel, 1998). 15 

Because the covariate milk yield not likely affects the infection process, it is used as a response 16 

variable in the model. It is known that age affects milk yield of dairy cows. The overall model 17 

structure is shown in Figure 2. 18 

Posterior Density Simulation. The MCMC method produced the posterior density of 19 

each parameter of interest. Successive values of each of the parameters were generated by 20 

simulation and the steady-state distribution was the posterior for that parameter (Robert and 21 

Casella, 2004). WinBUGS was used to implement this procedure. The model has been run for 22 

10,000 iterations and the samples from 5,001 to 10,000 iterations were used to provide 23 
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inferences of the posterior distributions. Convergence has been checked using CODA 1 

(Convergence Diagnosis and Output Analysis) for R software (Plummer et al., 2006). The source 2 

code is available upon request from the authors. 3 

 4 

RESULTS AND DISCUSSION  5 

Descriptive Findings 6 

For ELISA test scores, the parameter estimates and corresponding 95% credible intervals 7 

(CI) are in Table 1. The effects of covariates can be considered statistically significant at level 8 

0.05 if the corresponding credible intervals do not include zero. There was a significant 9 

difference in baseline mean ELISA scores between uninfected and infected cows. Milk yield had 10 

a significant negative effect on the ELISA test outcome, whereas age had a significant positive 11 

effect.  12 

The level of milk yield is capable of affecting the OD in terms of dilution, which explains 13 

the negative signs of the estimated coefficients of this effect. Another possible explanation is that 14 

cows with production of high levels of antibodies often have a reduced milk yield as 15 

demonstrated in Kudahl et al. (2004). The positive effect of age is natural as older cows usually 16 

have higher amounts of antibody than younger cows. The signs of the effects of milk yield and 17 

age in this longitudinal study support the cross-sectional study in Wang et al. (2006). Notice that 18 

the values of these coefficients are of the same order of magnitude as well. The difference is that 19 

both milk yield and age were significant in this longitudinal study, whereas only milk yield was 20 

significant in the cross sectional study in Wang et al. (2006).  21 

The ROC curve for the ELISA test was calculated based on the coefficient estimates and 22 

is in Figure 3. The AUC was  0.911 with 95% CI (0.903, 0.920). The estimates (95% CI) of the 23 
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specificity (1 - α0) and sensitivity (1 - α1) for the FC test were 0.980 (0.976, 0.984) and 0.358 1 

(0.327, 0.391), respectively. These accuracy estimates of the FC test support those that are 2 

published in the literature (Nielsen and Toft, 2008). 3 

For the parameters in the Weibull distribution model of infection onset, the scale 4 

parameter λ was 9.621 with 95% CI (8.919, 10.520), and the estimate of the shape parameter ρ 5 

was 1.805 with 95% CI (1.632, 1.965). Weibull distributions with ρ > 1 have a failure rate that 6 

increases with time. This indicates that the failure rate for older cows is higher than for younger 7 

ones,  as expected.  8 

In Norris et al. (2009), an increase in slope of ELISA score was proposed after infection 9 

onset instead of a jump in mean as in this paper. A generalization of our model was considered 10 

by accommodating a possible change in the slope of the mean. This was done by adding an 11 

additional covariate, (tij −  Oi)
+
 (i.e., time past infection onset), into the mean (Formula 1) of the 12 

ELISA test score. The estimated regression coefficient for this term  provided no evidence of an 13 

increased slope in ELISA OD values and the effect was negligible. 14 

Posterior Probability as a New Diagnostic Rule 15 

In this section, use of the posterior probability that change-point has occurred by the 16 

current time was proposed as a dynamic index for infection diagnosis in an individual subject. 17 

Because the case definition is latent, the diagnosis reflected the mutual condition that exists 18 

between presence of MAP, MAP-specific antibodies and any covariates included. 19 

Use of the Bayesian Model to Diagnose a New Cow. There is interest in diagnosing a 20 

new cow, cow n + 1, for Johne‘s disease. We repeatedly collect milk ELISA samples and fecal 21 

culture samples at a series of times to find the cow‘s infection onset time On+1. Based on the 22 

Bayesian model and substituting the parameter values as estimated from the Danish data set, 23 
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On+1 remains the only unknown value for cow n + 1. We use the observed ELISA and fecal 1 

culture test outcomes of cow n + 1 to update its posterior distribution of infection onset, leading 2 

to an estimate of On+1. Note this posterior distribution of {On+1} changes as more and more 3 

observations are taken from this cow. 4 

Figure 4 shows the posterior distributions of {On+1} of 2 ―simulated‖ cows at different 5 

observation times. The ELISA test outcomes, FC outcomes, and milk yield values are all 6 

simulated from their estimated distributions from analysis of the Danish longitudinal data. The 7 

first row shows a cow that never had an infection onset. Although the posterior probability may 8 

increase to some moderate value (third column) when some relatively high ELISA score are 9 

observed by chance, it will decrease after observation of the relatively low ELISA score again. 10 

The second row shows a cow that has an infection onset at 4.4 yr of age. The posterior 11 

probability of infection onset becomes large after the true onset time, and keeps increasing 12 

toward 1 afterwards, as consistently relatively high ELISA scores are observed. 13 

Performance of Posterior Probability Test. To investigate how well the proposed 14 

posterior probability test performs compared with the original ELISA test and FC test, a 15 

moderate size simulation study was undertaken. 16 

Two thousand cows mimicking the analyzed Johne‘s disease data set were simulated. For 17 

each cow, observation values were simulated every 3 mo from age 4 to age 4.75 yr. For each 18 

observation time, the true infection status, milk yield, ELISA test outcomes, and FC test 19 

outcomes were simulated based on the values of parameters estimated. These values were fit into 20 

a Bayesian model and the posterior probabilities were calculated. The performances of the 21 

posterior probability test based on 1 to 4 sample collections together with those of the original 22 

ELISA test are in Figure 5.  23 
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The performance of the posterior probability test improves over time, as more and more 1 

data become available. The AUC estimates (with 95% CI) for the ROC curves are 0.935 (0.921, 2 

0.950), 0.964 (0.953, 0.974), 0.976 (0.968, 0.984), and 0.984 (0.979, 0.989) for diagnoses with 3 

one, two, three and four observations, respectively. Furthermore, even with a single observation, 4 

the posterior probability test performs better than the ELISA test. This is due to the use of an 5 

informative prior and covariates in the Bayesian model. 6 

CONCLUSIONS 7 

A method was proposed to estimate the ROC curve of a continuous-scaled diagnostic test 8 

without a perfect reference test for longitudinal data. A change-point model was used to estimate 9 

the infection onset time of the hidden infection process, based on the observed test outcomes of a 10 

continuous-scaled test and a binary test.  Both the continuous-scaled test and the binary test were 11 

evaluated by comparing them with the estimated latent infection status of the model. The 12 

Weibull survival model for the latent change-point time could be generalized to accommodate 13 

covariate effects by linking a linear combination of covariates to the survival hazard function 14 

when applicable. An application of the method to ELISA and FC test outcomes for Johne‘s 15 

disease shows that the effects of milk yield and age were significant for the ELISA test outcome.  16 

Finally, the posterior probability tests behave better than naive single reading tests, because more 17 

information is considered than if the test were based on single readings. 18 
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Table 1. Parameter estimates and corresponding 95% credible intervals (CI) for log-transformed 1 

ELISA test score. 2 

Parameters  Posterior Mean 95% CI 

Healthy Baseline Mean 
0  -0.837 (  -0.870      ,    -0.805     ) 

Diseased Baseline Mean 
D 0  -0.160 (  -0.199      ,    -0.124     ) 

Milk Yield (kg) 
1  -0.004 (  -0.005      ,    -0.003     ) 

Age (yr) 
2    0.118 (   0.111      ,      0.125     ) 

Cow Level Variance 2

g    0.066 (   0.059      ,      0.073     ) 

Observation Level Variance 2    0.063 (   0.061      ,      0.064     ) 
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CAPTIONS FOR FIGURES 1—4 1 

 2 

Figure 1. Line plot of log-transformed ELISA optical density score vs. age for 20 randomly 3 

selected cows within age interval 3-5 yr. Bold lines represent cows with at least 1 Fecal Culture 4 

positive outcome in the age interval, thin lines represent cows with no Fecal Culture positive 5 

outcome in the age interval. The first ELISA optical density score after the first Fecal Culture 6 

positive outcome is indicated by ‗□‘ for each Fecal Culture positive cow. 7 

 8 

Figure 2. Model structure diagram of relationships among disease status, ELISA score, Fecal 9 

Culture (FC) score, age and milk yield. 10 

  11 

Figure 3. Estimated receiver operating characteristic (ROC) curve of ELISA measurement. 12 

Performance of Fecal Culture test is indicated by ‗□‘. 13 

 14 

Figure 4. Posterior distributions of {On+1} of 2 ―simulated‖ cows estimated by kernel smoothing 15 

method. ‗- -‘ indicates the current time of observation, ‗*‘ indicates the true onset time. Cow 1 16 

never has a disease onset, whereas Cow 2 has a disease onset at 4.4 yr of age. 17 

 18 

Figure 5. Performances of the original single reading ELISA test (- -), and the posterior 19 

probability test (–). Performance of Fecal Culture test is indicated by ‗□‘. 20 
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