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a b s t r a c t

In this paper we use information theory techniques on time series of abundances to deter-

mine the topology of a food web. At the outset, the food web participants (two consumers,

two resources) are known; in addition we know that each consumer prefers one of the

resources over the other. However, we do not know which consumer prefers which resource,

and if this preference is absolute (i.e., whether or not the consumer will consume the non-

preferred resource). Although the consumers and resources are identified at the beginning

of the experiment, we also provide evidence that the consumers are not resources for

each other, and the resources do not consume each other. We do show that there is sig-

nificant mutual information between resources; the model is seasonally forced and some

shared information between resources is expected. Similarly, because the model is sea-

sonally forced, we expect shared information between consumers as they respond to the
onlinear dynamics

ransfer entropy

forcing of the resources. The model that we consider does include noise, and in an effort to

demonstrate that these methods may be of some use in other than model data, we show the

efficacy of our methods with decreasing time series size; in this particular case we obtain

reasonably clear results with a time series length of 400 points. This approaches ecological

time series lengths from real systems.

different methodological approaches. One approach involves
. Introduction

n his classical text, “Animal Ecology,” Elton (1927) made the
ollowing two observations: “Every animal is closely linked
ith a number of other animals living round it . . .” “These

nterrelations between animals appear fearfully complex at

rst sight”. Interrelations in ecological communities fre-
uently involve interactions between species and include such
pecific processes as predation, competition and mutualism.
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Inference about the existence of interactions and estimation
of interaction strength are important components of seri-
ous investigations of ecological system behavior (Paine, 1992;
Wootton, 1997; Laska and Wootton, 1998; Abrams, 2001; Peacor
and Werner, 2004). Such inference can proceed by any of three
detailed studies of the mechanisms involved in specific inter-
actions (e.g., predation, Goldwasser and Roughgarden, 1993;
Wootton, 1997. Recently, Scotti et al. (2006) have calculated
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effective trophic position as an alternative to trophic level.
Libralato et al. (2006) have identified keystone species in food
webs, but this method is confined to models and not to time
series data. Another approach utilizes species removal exper-
iments with direct estimation of responses in abundances or
densities of other species in the community (e.g., Paine, 1992;
Berlow, 1999). The third approach involves analysis of time
series of abundances of the potentially interacting species,
even in the absence of experimental perturbations (e.g., Ives
et al., 2003).

Here we consider the latter approach and attempt to draw
inferences about food web interactions using time series
data for species populations in the community of inter-
est. Current methods for drawing inference about coupling
and interaction strength in multi-species food web stud-
ies using time series data are based on methods that have
evolved from Wright’s path analysis (Wright, 1921, 1934)
and include, as examples, approaches presented by Pfister
(1995) and Ives et al. (1999, 2003). However,these methods
are all based on approaches developed for linear models,
and so typically assume that (on an appropriate scale, e.g.,
log-transformed) interspecific impacts can be described by
linear equations with constant coefficients. The apparent
prevalence of nonlinearity in ecological systems and pro-
cesses (e.g., Ayala et al., 1973; Schaffer and Kot, 1986; Hastings
et al., 1993; Constantino et al., 1997; Dennis et al., 1995;
Cushing et al., 2003; Turchin, 2003; Boudjema and Chau, 1996)
argues for consideration of methods that are applicable to
nonlinear systems as well. Abrams (2001, page 209) argues:
“because interactions are typically nonlinear, single numer-
ical measures (of interaction strength) are generally poor
characterizations”.

In this paper, we address the fundamental question—can
we derive a qualitative description of the topology of a
food web from only time series data, given only a cur-
sory description of the ecological setting (e.g., number of
resources and consumers), typical of many empirical stud-
ies? In this study, we address this reverse inference question
using statistical approaches based on mutual information
and transfer entropy. Mutual information, first introduced by
Shannon and Weaver (1949), later used in the investigation of
chaotic dynamics by Fraser and Swinney (1986) and adapted
to measure information transfer by Vastano and Swinney
(1988), measures the amount of shared information between
two time series. Transfer entropy, introduced by Schreiber
in 2000(Schreiber, 2000), is less easy to interpret. Transfer
entropy measures the extra information about dynamics of
one system component provided by the knowledge of another
component. While mutual information is a static, symmetric
measure of shared information, transfer entropy is a dynami-
cal, asymmetric measure of information transfer. We use both
measures to reconstruct a food web topology based only on
time series data. Ecological time series are generally short,
and always noisy. However, some information statistics, based
on the entropies of the time series in question, can be used
when the time series are short, as long as they are station-

ary. There are methods to make density estimates relatively
reliable with sparse data sets and we employ such methods
here. Other approaches are available and might lead to further
improvements.
2 0 8 ( 2 0 0 7 ) 145–158

The use of information theory to examine the stability
of a food web is not a new idea in ecology. Beginning with
MacArthur (1955) who examined stability via the Shannon
Entropy, a long list of researchers has tackled the idea of
describing stability (see, e.g., Ulanowicz, 2001 and references
therein). Rutledge et al. (1976) discusses stability in three real
systems using information theory methods and also provides
an illuminating discussion of the effectiveness (or not) of only
looking at complexity and species diversity to describe stabil-
ity.

More recently, Ulanowicz (2001) and Ulanowicz and Abarca-
Arenas (1997) has described ascendency, a measure that
uses mutual information scaled by total system throughput.
This idea was formalized by Pahl-Wostl (1992) and Latham
and Scully (2004) have noted some recent discoveries with
regard to its interpretation. One improvement of ascen-
dency over mutual information is that the definition may be
augmented to address spatially and temporally extended sys-
tems. Ulanowicz (2001) offers a lucid overview and history of
information theory in ecology and an honest critique of the
strengths and weaknesses of efforts to describe stability using
information theory methods. Latham (2006) has contributed
open-source algorithms and software to use in network flow
analysis. Fath et al. (2003) recently used Fisher information
to investigate regime changes in Network Environ analysis
as well as direct and indirect effects (Fath and Patten, 1999).
Fisher information has also been used by Mayer et al. (2006)
to study dynamic regime changes. However, few ecological
information theory applications have been concerned with the
inverse problem of discovering the food web interactions from
time series of abundances.

1.1. Information statistics—an overview

Information theoretical techniques first introduced by
Shannon (1948) and Shannon and Weaver (1949) are widely
used in nonlinear dynamics to analyze time series. Tech-
niques for estimating both the extent of shared information
and the direction of information flow can be useful in
investigating food web topology.

Consider a time series as a discretization of a system state
variable X. Note that p(x) is the probability of landing in any
one of the discrete states x that we observe in the time series.
For the entire distribution X, we can compute the amount of
information generated by each succesive observation. In the
theoretical sense, “information” is defined as the measure of
freedom-of-choice (or more accurately, indeterminacy—see,
e.g., Ulanowicz, 1986, chapter 5) for system states (Shannon
and Weaver, 1949). For example, in a periodic system, once we
have completed one period, there is no additional informa-
tion generated by successive observations. There are no more
available choices for system states that differ from the ones
already observed; all trajectories repeat. However, in a non-
linear chaotic system, there will be additional information (in
the sense that any future generated by new observations that
have not yet been observed) no matter how long the system is

monitored.

Given the probability density p(x) of landing in any one of
the system states then, we quantify the information generated
by p(x) by calculating the Shannon entropy H of the system
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omponent:

(X) = −
∑
x ∈ X

p(x) log2 p(x) (1)

Looking more closely at the expression for entropy, we see
hat log2 p(x) is the information content of a state x ∈ X. When
e sum, we are averaging the information content over all

he states. The entropy, then, is the average amount of infor-
ation contained in X. The entropy is the foundation of the

nformation statistics presented here.
Again considering the expression for entropy, Eq. (1), we

ee that it depends solely on the probability density function
(x). Suppose we have an estimated or hypothesized density
unction for our system states, call it p̃(x) that differs from the
rue density. Each would generate a (Shannon) entropy. If the
ntropies differ, and if p(x) represents the better approxima-
ion of truth, the difference must depend on the deviation of

˜ (x) from p(x). We can quantify this difference in entropy by
ntroducing a variant of the Shannon entropy, the Kullback
ntropy. It is calculated as follows:

p̂ =
∑
x ∈ X

p(x) log2
p(x)
p̃(x)

(2)

The Kullback entropy is a measure of the “error” that is
btained by using p̃(x) in lieu of p(x), or put another way, as
he information gained per observation by using p(x) in favor
f p̃(x) (Kullback, 1997). The reason we define the Kullback
ntropy as a separate entity from the Shannon entropy is that
he Kullback entropy allows us to focus on a particular proba-
ility density p(x) and then test the scenario that p̃(x) describes
he system as well as p(x). Larger Kullback entropy reflects
oorer performance of p̃(x) as an approximation to p(x).

With the Kullback entropy in hand, we will describe the
ollowing two statistics that we will use to draw inferences
bout the nature and degree of coupling and dynamical effects
etween species in an unknown food web. All of the statistics
hat we use will be built in some way from the Kullback entropy
Eq. (2)) and/or the Shannon entropy (Eq. (1)).

.2. Mutual information statistic

f we have two processes, we often want to measure the
mount of shared information between them, in other words,
heir deviation from independence. This would provide infer-
nces about the coupling between the two processes. If we
tart with X and Y, with probability distributions p(x) and p(y),
e can compute the degree to which p(x, y) deviates from inde-
endence. This is

og2
1

p(y)p(x)
− log2

1
p(x, y)

(3)

If X and Y are independent, note that we get zero. If we
verage over all points, we can compute the mutual information

etween X and Y as a Kullback entropy:

I(X, Y) =
∑

X

∑
Y

p(x, y) log2
p(x, y)

p(x)p(y)
(4)
8 ( 2 0 0 7 ) 145–158 147

In a different form, we can represent the mutual informa-
tion as a sum of Shannon entropies:

MI(X, Y) = H(X) + H(Y) − H(X, Y) (5)

where H is the entropy from Eq. (1). The mutual informa-
tion MI(X, Y) is therefore the average loss of indeterminancy
that results from assuming that X and Y are independent,
so MI(X, Y) = 0 if X and Y actually are independent. This
measure is symmetric in X and Y: MI(X, Y) = MI(Y, X). The
mutual information then measures the amount of informa-
tion gained about one of the system components through the
measurement of the other. If the two processes are indepen-
dent, no information about the first system component can be
extracted from the second, and vice versa. If the food web were
seasonally forced, i.e., if one or more species were seasonally
forced, we would expect to see positive mutual information
between all the species: there is some shared information
from the forcing. However, we expect to see less mutual infor-
mation between consumers than between, e.g., a resource and
a consumer of that resource; shared information between con-
sumers could be a direct or indirect result of the forcing or an
indirect result of their both consuming the same resource or
it could be an indirect effect of consuming different resources
if the resources competed with each other for some other
unseen resource. In a system that is not externally forced,
positive mutual information between any two system com-
ponents could indicate that all the components interact.

Although mutual information will show that two system
components are coupled, it gives no indication of the dynam-
ical effect of one system component on the other. One way to
glean some knowledge of about dynamical effects is to focus
on information transfer by modifying the mutual informa-
tion to compare coupling at different times in the time series.
The time-delayed mutual information, introduced by Vastano
and Swinney (1988), measures the information gained about
one system component by measuring another at a past or
future time. Although time-delayed mutual information does
not take the dynamics of the two time series into account
explicitly, the change in time-delayed mutual information
over a given time window can indicate that one system affects
another with a particular response time. For example, in a food
web, we might expect to see a flat time-delayed mutual infor-
mation for coupling induced by an outside forcing, while we
would expect to see a well-defined maximum in the mutual
information for true transfer of dynamics—for example a con-
sumer affecting a resource because of predation (Nichols,
2005).

The time-delayed mutual information (TDMI) can be
defined as follows. To find out how much information about
a process X(t) is gained by observing a future or past value of
another process Y(t), we compute

TDMI(X, Y + �) = H(X) + H(Y + �) − H(X, Y + �) (6)

This statistic can be computed for both positive and nega-

tive values of �. If the maximum of TDMI(X, Y + �) as a function
of � occurs for � > 0 this indicates a flow of information from
X to Y; X “now” tells us about Y “later”. Similarly a maximum
for � < 0 indicates information flow from Y to X. Although this
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statistic is not symmetric, it is reflected through zero, that is
TDMI(X, Y + �) = TDMI(X − �, Y).

1.3. Transfer entropy statistic

This statistic, introduced by Schreiber in 2000 (Schreiber, 2000),
measures the amount of dynamical information flow between
two processes. We can, at least in the discrete case, compute
transition probabilities for a trajectory of a process X. This is
of course related to the entropy. Now, we consider both the
transition probability of going from some state x0 to a state in
the next time step, x1, and ask whether there is any additional
information about that probability provided by another pro-
cess Y, that is, p(x1|x0, y). Considering this, we can see if the
process Y actually affects the dynamics of X; does knowing y
give us any information about the transition probabilities of
x? If it does, then we can quantify this additional information
with the transfer entropy.

To define the transfer entropy, we start by looking at the
transition probability from one state to another: p(xi+1|xi). We
can form a conditional entropy from this (see, e.g., Kaiser and
Schreiber, 2002) and then consider the hypothesis that the pro-
cess Y affects the transition probabilities in some way. From
this we form another Kullback entropy to see if there is any
additional gain in information from considering Y in the tran-
sition probability:

TE(Xi+1|Xi, Yi) =
∑

xi+1,xi,xi

p(xi+1, xi, yi) log2

[
p(xi+1|xi, yi)

p(xi+1|xi)

]
(7)

where p is the density. Thus the transfer entropy measures the
change in entropy rate of process X when affected by process
Y. Note that the denominator of Eq. (7) depicts a first-order
Markov process in which the transition probability from time
i to time i + 1 depends only on the system state at time i,
whereas a process of order > 1 can be considered as well.
The numerator of Eq. (7) focuses on the influence of yi; this
state variable can also be considered at other times (Schreiber,
2000).

We note most importantly that transfer entropy is not sym-
metric; entropy can be transferred in one direction and not
necessarily in another. Because the transfer entropy yields
information about the direction of dynamical information
transfer, it is a powerful tool for analysis of coupling relation-
ships. We will discuss the interpretation of transfer entropy
in Section 1.4. Finally, because a shorter time series contains
less information than a long time series. the rate of informa-
tion transfer is expected to go down as the time series length
is shortened.

1.4. Interpretation of information statistics

The mutual information statistic, in both static and time-
delayed forms, is relatively easy to interpret. However, there
are some characteristics of the transfer entropy, described

below, which can cause confusion in its analysis. Marschinski
and Kantz (2002) noted these difficulties and offered an
alternative formulation of transfer entropy. Here, we instead
explore the characteristics of transfer entropy in a very simple
2 0 8 ( 2 0 0 7 ) 145–158

case in order to provide interpretation guidelines of transfer
entropy in its original form.

We stress that transfer entropy is ambiguous in that if two
processes are completely independent, transfer entropy can
be zero and if two processes are identical, transfer entropy
can also be zero. We also note that transfer entropy can be
non-zero between two processes if they are driven by a third,
unseen system. We offer the following “toy” example, two dis-
crete, stochastic systems driven by a third system, to illustrate
this concept.

Let F be a deterministic, discrete driving system that cycles
between states 0 and 1 with probability 1 (e.g., a sequence
for F with initial condition 0 is 0, 1, 0, 1,. . .). The only non-
deterministic quantity for F, then is the choice of initial
condition (0 or 1). We then consider two systems, G and H
which are stochastic and depend on the state of F (F drives
both G and H). The rule for update of G is: gn = (Fn + 1) mod 3
with probability (1 − c)/2 and gn = (Fn + 2) mod 3 with proba-
bility (1 + c)/2. This is somewhat similar to the discrete model
described in Kaiser and Schreiber (2002). We then let H be
a similar, but not necessarily identical, system to G. Then
hn = (Fn + 2) mod 3 with probability (1 − d)/2 and hn = (Fn +
3) mod 3 with probability (1 + d)/2. We can compute the trans-
fer entropies between H and Gdirectly:

TEG→H = 1
16

[(28 − 4d2) log 2 − (8 + 8d + (1 − d2)(1 − c)) log(1 + d

− (8 − 8d + (1 − d2)(1 + c)) log(1 − d)]

and

TEH→G = 1
16

[(28 − 4c2) log 2 − (8 + 8c + (1 − c2)(1 − d)) log(1 + c

− (8 − 8c + (1 − c2)(1 + d)) log(1 − c)]

Thus we see that even if c and d are equal, the transfer
entropies are non zero. If we assign quite different values
to c and d, e.g., c = 0.2 and d = 0.8, we get TEG→H ≈ 0.84207
and TEH→G ≈ 1.5853. Taking c and d to be close to each other
for example c = 0.4 and d = 0.5 we find TEH→G ≈ 1.2652 and
TEG→H ≈ 1.3829.

The mutual information for this model can also be calcu-
lated directly:

MI(G, H) = 1
8

((1 + c)(1 − d)[log(1 − d) + log(1 + c)]

+ (1 − c)(1 + d)[log(1 + d) + log(1 − c)]

+ (2 + 2cd) log 2 + (4 + 4cd) log(1 + cd))

For the first example c = 0.2, d = 0.8 we find MI(G, H) ≈
0.4471 and for the second example, c = 0.4, d = 0.5 we find
MI(G, H) ≈ .0.395695.

We see that in the first example, although the transfer
entropy from G to H is relatively high, the asymmetry is also
large. In this case, the dynamics are dissimilar. However, each
provides information about the driver that the other does

not. We see in the second example that transfer entropy is
more symmetric. In this case, the dynamics of both G and H
are similar. There is some transfer entropy; one is generat-
ing information that the other does not. In both cases mutual
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nformation was positive and did not differ greatly. This shows
hat there is shared information. However, we see that the rate
f information transfer in both examples is greater than the
hared information.

In this very elementary example, we see that the driven
ystems can exhibit positive transfer entropy with no direct
nformation transfer. Thus it is likely that in a driven sys-
em with actual information exchange, the transfer entropy
rom the driver can either mask or enhance effects of the two
ystem variables on each other. This characteristic of transfer
ntropy, however, rather than being a problem, can be used
o glean some interpretation guidelines from this simple sys-
em. In computer science terms, this is a “feature” and not a
bug”. We see primarily that disparate transfer entropies signal
hat the dynamics are not necessarily shared and we may be see-
ng transfer of indirect information about the forcing from the
ther system. Thus the transfer entropy can give us informa-
ion about direct and indirect coupling. This information is not
ccessible with the mutual information statistic alone.

This demonstrates that the results of transfer entropy need
o be interpreted in toto. transfer entropy is a one-sided statis-
ic; it is possible to have entropy transferred in one direction
nd not another. However, as we see from our food web
odel, the more likely scenario for real systems and real

ata is that some entropy will be transferred in a driven or
nteracting system because of indirect effects. As we saw
n this case, the asymmetry can be exploited in the inter-
retation of transfer entropy in order to discern stronger or
eaker relationships between one time series and another.
ore asymmetric transfer entropies signal less coupling of

ynamics, and less asymmetric transfer entropies signal more
oupling of dynamics.

. The model

ne subset of the authors – the “modeling team” – gener-
ted artificial time series data from a food web model which
ncluded two resource (prey) and two consumer (predator)
pecies. These data were provided to another subset of the
uthors—the “analysis team”. The analysis team knew the
umbers of resource and consumer species and which time
eries represented resource and consumer species, but did not
now the form of the underlying model equations, or the val-
es of model parameters. After the food web structure was
etermined by the analysis team, as described in Section 5,
elow, the modeling team revealed the underlying equations
nd parameters.

.1. True structure of the underlying food web model

he food web used to generate the time-series data con-
isted of two resource species and two consumer species. The
esource species, �1 and �2, exhibit density-dependent growth
nd are environmentally forced. The consumer species, �3

nd � , have growth dependence only on the resource species
4

ithin the framework of the community matrix A, but mor-
ality based on a constant factor m, where m = 0.1 in this
imulation. The coupled equations for the model, based on
eneralized Lotka–Volterra expressions (assuming a Type I
8 ( 2 0 0 7 ) 145–158 149

predator–prey interaction), were:

∂�1

dt
= r1zt�1(1 − 0.1�1) − ˛1,3�3�1 − ˛1,4�4�1

∂�2

dt
= r2zt�2(1 − 0.1�2) − ˛2,3�3�2 − ˛2,4�4�2

∂�3

dt
= ˛3,1�3�1 + ˛3,2�3�2 − m�3

∂�4

dt
= ˛4,1�4�1 + ˛4,2�4�2 − m�4

where (i) ˛i,j is the direct effect of species j on species i, (ii)
mi is the intrinsic mortality rate of the predator/consumer
species in the absence of food, and (iii) zt is an exogenous envi-
ronmental forcing variable with both seasonal and random
components,

zt = 1 + 0.25 cos
(

2�t

52

)
+ 0.1Q(t)

Here t is time in weeks (i.e., the model uses a year consist-
ing of 52 7-day weeks) and the random component Q(t) was
computed by generating Q(0), Q(52), Q(104), . . . as independent
Gaussian random numbers with mean = 0, variance = 1, and
interpolating these values by a cubic spline. Each run of the
model used a different randomly generated Q(t) function.

Because this was a blind study (i.e., the model structure was
unknown by the analysis team), we used a resource/consumer
labeling system to facilitate topology identification. In the
analysis, �1 is labeled R1 (or resource1), �2 is labeled R2
(resource 2), �3 is labeled C1 (consumer1), and �4 is labeled
C2 (consumer2). For this study, data were generated using
the following parameter values: m = 0.1, r1 = 1.25, r2 = 1.5,
˛3,1 = 1, ˛4,1 = 0.3, ˛3,2 = 0.3, and ˛4,2 = 1. Thus, in the under-
lying model used to generate the time-series data there was
(i) no direct competition between species for a given trophic
level (i.e., the resource species neither directly interact, nor do
the two consumer species interact), and (ii) consumer species
1 interacted most strongly with resource species 1, whereas
consumer species 2 interacted most strongly with resource
species 2—with symmetry in the strength of the interactions
(i.e., effect of consumer species i on resource species j is equiv-
alent to effect of resource species i on consumer species j).

It is important to note that the results that we present were
obtained without knowledge of the model, model parameters,
or community matrix. Although we hoped to be able to dis-
cover the possibility of preference of one resource over another
for each consumer, we did not assume this information at the
outset.

3. Time series: the “Data”

A plot of the first 1000 points of the time series, with transients
removed, appears in Fig. 1. From inspection of the time series
we see that is is quite likely the model is seasonally forced;
this was verified by the modeling team before the analysis was
begun. It was also revealed by the modeling team that there

is some noise in the model. However, no other information
about the model was known before the analysis.

All of the statistics mentioned here require the computa-
tion of an estimated density from a time series. These time
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Fig. 1 – First 1000 points of the consumer–resource time series (without transients). C1, consumer1; C2, consumer2; R1,
resource1; R2, resource2. N refers to the number of near neighbors used in the density estimation (p̂(x)) used to calculate

easu
mutual information and transfer entropy. All information m

series are discretizations of continuous processes and in par-
ticular these processes are nonlinear. Thus, the usual method
of binning or aggregating a discrete distribution in order to find
the density is unlikely to provide accurate estimates of density.
One reason for this is that the points are not uniformly and
evenly distributed in state space; some regions are likely to be
sparser than others. The usual method of using a Heaviside
Step Kernel (Liebert and Shuster, 1989; Prichard and Theiler,
1995) may not work for very sparse densities—which we hope
to be able to investigate in order to investigate the viability of
the method for ecologically realistic time series lengths. The
Heaviside Step Kernel estimates density at a point xi by finding
all time series points xj within a radius R of xi, then counts the
number of such points xj. However, if the data are not uniformly
sparse, the fixed radius R (spherical binning) can yield a poor
estimate. Thus we will, for these experiments, use a fixed-
mass approach (see, e.g., Kaiser and Schreiber, 2002) along
with a naive kernel density estimator (Silverman, 1986)(see
also Marschinski and Kantz, 2002 for another estimate of ker-
nel density for transfer entropy with a relatively short time
series).

We begin, for our density estimate, with a kd-tree (see
Bentley, 1979), implemented with a fast near neighbor search
(see Hjaltason and Samet, 1995). The kd-tree is a computa-
tional tool for creating an easy-to-search multidimensional
adaptive data structure. This structure is especially suited to
the highly non-uniform distribution that is commonly found
in time series from nonlinear systems.

To compute the density estimate for our M-point time
series X, for each representative point x0 (which, as we shall
see, is not necessarily one-dimensional), we use the near-
neighbor search to determine the N (we use N = 5 and N = 10)

nearest neighbors to the representative point. We then com-
pute the largest side length of the rectangle, centered at x0,
that exactly encompasses the nearest neighbors. Using the
naive kernel estimator (correction factor) 1/2, we compute the
res are in bits.

estimate for the density p̂ (X), using the procedure outlined in
Kaiser and Schreiber (2002).

To insure that the effects that we saw for short time series
lengths were not an anomaly or peculiar to the particular time
series fragment we used, we also front-truncated the original
time series both by 1000 points and by 2000 points, chose the
remaining shorter time series fragments from these truncated
time series and computed the statistics in the same fashion.
We discuss these results along with the original time series
results, in Section 5.1.

4. Parametric analysis

To motivate our analyses using information statistics, a team
member who generated the data and therefore had knowledge
of the structure of the generating model performed a conven-
tional parametric analysis. The details of the analysis appear
in the appendix. We will summarize the results here.

The analysis yielded perfect results (coefficients for the
consumers are estimated nearly perfectly)) for the consumer
because the fitted statistical model for their dynamics is
exactly right. Those for the resources (species 1 and 2) are not:
the consumer impact coefficeints are all underestimated. For
the resource species the fitted model is not quite the truth,
because the data-generating model for resource species i actu-
ally has the time-dependent coefficient zt multiplying (1 − �i).
That is, the fitted model (in the appendix, see (A.2)) has time
dependence only in the intercept of the linear regression,
while the data-generating model also has time-dependence in
one of the coefficients. This error in model specification leads
to biased and imprecise estimates of interaction parameters,

even for interactions that are specified correctly in the fitted
model.

Moreover, the parametric analysis is so powerful that it pro-
vides clear evidence for some things that are not actually true.
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or each artificial data series we also fitted the model

i = s
(1)
i

(t mod 52) + s
(2)
i

(t) + si1(�1) + si2(�2) + si3(�3) + si4(�4) (8)

here sij are the fitted spline functions representing the effect
f species j on the per-capita growth rate of species i. This
eans that the species interactions were not assumed to be

inear, even though they really are. In (8) the fitted model
tries” to capture the missing interaction term by putting non-
inearities somewhere else, and it succeeds because there
re consistent patterns of covariation among state variables.
odel (8) really does predict better than (A.2)– given the struc-

ure of the data – but it does so for the wrong reason.
As this example illustrates, the potential power of a para-

etric analysis is only realized when the fitted parametric
odel is exactly right. A subtle error in the fitted model
which could easily occur when working with real data –
arkedly degrades the accuracy of the numerical estimates

f food web parameters, and produces incorrect conclusions
at very high statistical confidence levels) about the qualita-
ive nature of the dynamics. By using information statistics,
e are able to dispense with all assumptions about the form
f the data-generating process. The unavoidable cost is loss
f precision relative to the ideal situation of fitting a correct
arametric model. The potential gain is robustness against our

ncomplete knowledge of the data-generating mechanisms.

. Results—verification of resources and
onsumers

ith the limitations of parametric methods in mind, we turn
o the analysis using information theory methods. Although
he analysis in the previous section assumed knowledge of the
odel, we stress that the following was undertaken with only
he time series data of abundances.

We consider Fig. 2, the plots of mutual information for
ll combinations of resources and consumers for the food

ig. 2 – Mutual information – food web model – between consum
eighbors used in the density estimation. C1, consumer1; C2, co
umber of near neighbors used in the density estimation (p̂(x)) u
ll information measures are in bits.
8 ( 2 0 0 7 ) 145–158 151

web model. Recall that mutual information is symmetric; e.g.,
MI(R1,C1)=MI(C1,R1); only one direction is given in the plot
key. We note first of all that mutual information between
consumers is the lowest of all the time series pairs. This
is expected; the two consumer’s dynamics are not identical,
but because of seasonal forcing the resources on which they
prey are coupled. Thus, the consumers are indirectly linked
through the resources and show some information overlap.
As mentioned, the mutual information between resources
is relatively high. We see also that mutual information for
some resource/consumer pairs is larger than for others. As
expected, mutual information decreases as time series infor-
mation declines (reduction in time series length).

We turn to the plot of transfer entropy, Fig. 3. This
plot shows very low transfer of information between con-
sumers; this was something of a sanity test and also provides
evidence that this is not a tritrophic food web; the con-
sumers are not resources for each other. This is bolstered
by the even stronger result for mutual information: the
consumer–consumer mutual information is lower than that
for the other relationships. We note however, that consumer-
to-consumer transfer entropy is not zero; this reflects the
indirect transfer of entropy through the resources. We also
see that as in other predator/prey systems, the predator–prey
transfer entropy (colloquially, the amount of dynamical infor-
mation about the prey that the predator exhibits) is larger
than the prey–predator transfer entropy. A resource/consumer
system can be thought of, very loosely, as a drive/response
system where the resource can be thought of as the drive and
the consumer, the response. Although in a food web the con-
sumer (response) does affect the resource (driver), the resource
can exist without the consumer, but the consumer cannot
exist without the resource. Hence, the resource corresponds
somewhat to the drive. Since the response contains the infor-

mation in the drive, we expect that the response will carry
more information about the drive than vice versa. Thus, we
also have a sanity check that the resources and consumers
are correctly identified. We note, however, the analogy to the

ers and resources for (a) N = 5 and (b) N = 10 near
nsumer2; R1, resource1; R2, resource2. N refers to the
sed to calculate mutual information and transfer entropy.
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Fig. 3 – Transfer entropy – food web model – from resources to consumers and consumers to resources for (a) N = 5 or (b)
N = 10 near neighbors in the density estimation. C1, consumer1; C2, consumer2; R1, resource1; R2, resource2. N refers to

n (p̂(
the number of near neighbors used in the density estimatio
entropy. All information measures are in bits.

drive–response system is imperfect. The consumer does affect
the resource, and more so if a particular resource is the main
prey.

We also consider the fact that the resources may be in
competition with each other (see, e.g., Ulanowicz and Puccia,
1990). However, the transfer entropy between the two resource
species is nearly the same in both directions. This leads us
to believe that neither has much of a negative impact on the
other and, as with the consumers, do not consume each other.

5.1. Identification of arrows in the food web topology
The existence of significant information transfer and infor-
mation sharing between all combinations of resources
and consumers indicate that while there may be a pre-
ferred resource for the consumers, the consumers will take

Fig. 4 – Time-delayed mutual information – food web model – be
2400 points and (b) 2000 points. There were N = 10 near neighbo
consumer2; R1, resource1; R2, resource2. N refers to the number
to calculate mutual information and transfer entropy. All informa
x)) used to calculate mutual information and transfer

advantage of both resources. Thus there is very little dif-
ference in the transfer entropies between, for example,
resource1/consumer1 and resource2/consumer1. This partic-
ular statistic, then, transfer entropy, allows us to “draw the
arrows” in the food web, i.e., both consumers prey on both
resources, but the small differences in transfer entropy do not
allow us to determine the preferences, if any.

We do find some weak evidence for drawing preferences
in the food web, from the time-delayed mutual information
(Fig. 4). In these plots, we see that the time-delayed mutual
information statistic for the consumer1/resource1 and con-
sumer2/resource2 pairs have maxima near zero. The other

pairs (consumer1/resource2 and consumer2/resource1) show
much flatter overall plots than the others. Because we expect
constant flow of information for relationships based on cou-
pling from forcing, the flatter plots are more indicative of

tween consumers and resources, for time series length (a)
rs used in the density estimation. C1, consumer1; C2,
of near neighbors used in the density estimation (p̂(x)) used
tion measures are in bits.
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Fig. 5 – Time-delayed mutual information – food web model – for time series lengths (a) 1000 and (b) 500. There were N = 10
nearest neighbors were used in the density estimation. C1, consumer1; C2, consumer2; R1, resource1; R2, resource2. N
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efers to the number of near neighbors used in the density e
ransfer entropy. All information measures are in bits.

oupling based on forcing rather than direct coupling. How-
ver, we see that this relationship is not as persistent as some
f the other statistics; it disappears when the time series have
ewer than about 1000 points (Fig. 5). Thus, the time-delayed

utual information provides only weak evidence that there is
preference for resources by particular consumers.

Now we turn to measurement of asymmetry in the transfer
ntropy to identify preferences for either resource by a con-
umer. The asymmetry in transfer entropy is computed for
rbitary X and Y by taking:

TEX→Y − TEY→X| (9)

Recall from the results in Section 1.4 that if two systems are
trongly and directly coupled, we expect that mutual infor-
ation will be relatively high and there will be significant

ransfer entropy as well. We also expect that if the coupling is
irect, the transfer entropy between the two systems should
e similar, but not identical. If the coupling is either indirect or
eak, we expect more significant asymmetry between trans-

er entropies in the two directions. The forcing yields positive
ransfer entropy, but dissimilar dynamics (weaker coupling)
ill exhibit asymmetry. In our resource/consumer system we

xpect that if the consumer does not eat as much of the
esource, the resource does not affect the consumer’s popula-
ion as highly. Conversely, if the resource is the preferred prey,
hen the growth of the consumer population is more highly
ependent on the resource. However, this inference about the
elationship must be tempered by the mutual information and
he values of the transfer entropies themselves. If the transfer
ntropy and mutual information are low (as one would expect
etween resources or between consumers), the asymmetry
arries less meaning.

We refer to the plot of asymmetry in transfer entropy
o assign the preferences (see Fig. 6). Asymmetry between

esource1/consumer2 and resource2/consumer1 is substan-
ially higher than the other relationships. This higher
symmetry persists for time series to around 400 points. For
ime series shorter than 300 points (N = 10) or 400 points
ation (p̂(x)) used to calculate mutual information and

(N = 5), the relationship is not discernable from the plot.
The asymmetry in transfer entropy was lowest between
consumer/consumer and resource/resource pairs, indicat-
ing little transfer of entropy. However, mutual information
was also lowest for these pairs, providing little indication
of shared dynamics between resources or between con-
sumers. This agrees with the other results indicating that the
food web only has one trophic level. The TE asymmetries
between resource1/consumer1 and resource2/consumer2,
however, suggest shared dynamics. The transfer entropy
was relatively high and showed more symmetry than the
other resource/consumer pairs. This, coupled with relatively
high MI, indicates that these pairs influenced each other’s
dynamics more closely. Thus, we conclude that consumer1
prefers resource1 and consumer2 prefers resource2. However,
because there is no direct formula that links transfer entropy
to coupling strength, we were not able to assign a meaningful
ratio to the preferences of the consumer/resource pairs. In the
absence of knowledge of the model parameters, then, we were
simply able to indicate the preferences and not the strength
of the preferences with these statistics.

In order to be certain that these results were not an accident
of the particular portion of the time series that we used, we
extracted fragments of the time series from other portions of
the entire time series and computed the statistics. The results
from these alternate fragments were nearly identical to those
of the original time series fragments. The asymmetry in trans-
fer entropy for several such fragments, taken from the original
time series with the first 1000 points truncated, appears in
Fig. 7 for comparison.

We are now in a position to identify the food web topology.
From the evidence presented above, we conclude that con-
sumer1 prefers resource1 but will also consume resource2.
consumer2 prefers resource2 but will also consume resource1.

The consumers do not eat each other and the resources do
not eat each other. Thus, the topology is represented by Fig. 8.
After the analysis was complete, the modeling team revealed
the actual food web topology. This is given in Fig. 9. The actual
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Fig. 6 – Asymmetry in transfer entropy – food web model – (e.g., (C1,C2) = |TEC1→C2 − TEC2→C1|) for (a) N = 5 and (b) N = 10
near neighbors in the density estimation. C1, consumer1; C2, consumer2; R1, resource1; R2, resource2. N refers to the

(x)) used to calculate mutual information and transfer entropy.
number of near neighbors used in the density estimation (p̂
All information measures are in bits.

topology and that obtained by using the information statistics
are operationally identical.

5.2. Caveats

In order to compute densities for the time series, the time
series must be stationary. For example, if there were a catas-
trophic event during collection of the data in which the
availability of a resource changes completely (or a consumer

appears or disappears), the density estimates will not be valid.
It is possible to compute information statistics on stationary
pieces of such data (to determine stationarity in a nonlinear
time series, see, e.g., Kennel, 1997, Kantz and Schreiber, 1997

Fig. 7 – Asymmetry in transfer entropy – truncation 1k –
using alternate fragment from the time series using N = 5
near neighbors in the density estimation. C1, consumer1;
C2, consumer2; R1, resource1; R2, resource2. N refers to the
number of near neighbors used in the density estimation
(p̂(x)) used to calculate mutual information and transfer
entropy. All information measures are in bits.

Fig. 8 – Reconstructed food web based only on analysis of
time series data. The arrows indicate the direction of
positive interaction. Thickness of the line indicates
differences in the strengths of the interactions; thicker lines

indicate stronger interactions. C1, consumer1; C2,
consumer2; R1, resource1; R2, resource2.

and references therein) but accurate determination of the food
web topology (using information statistics) during transient
periods or using a non-stationary time series is not possi-
ble with the information statistics alone. However, we do not
believe that this should necessarily be viewed as a method-
ological shortcoming. It may not be reasonable to think that a
single topology may characterize a system undergoing change.
The use of system topology to make predictions typically
requires stationarity as well, so the stationarity assumption is
not unusually restrictive. We note that conventional ecological
wisdom indicates that transients are more information-rich
than stationary dynamics. Although this may be the case, the
information is not accessible via the transfer entropy.

In this analysis, the transients that appeared at the begin-

ning of the time series (about 500 data points) were truncated
in order to assure that the time series were stationary.
Although it would be quite interesting to study the transient
behavior of the food web before it settles into a steady state, it
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Fig. 9 – True food web topology, based on model
p
i

i
o
t
m

o
i
r
t
i
e
t
h
m
a
a
i

5

T
f
f
t
t
o
a
r
o
i
t
s
e
t
r
3
f
a
t
a
f
t
t
s

arameters. Again, arrows indicate the direction of
nteraction and thicker lines indicate stronger interactions.

s not possible to do that with the statistics used here because
f the stationarity requirement. Therefore, we wistfully leave
he study of the transient behavior to another day and another

etric.
We should mention that this model was not a complex

ne. While it was seasonally driven and did include noise, it
ncluded only one compartment and did not include any non-
elevant participants. However, some of the authors have used
ransfer entropy and an attractor-based method, continuity, to
nvestigate a spatially extended predator–prey model (Nichols
t al. (2005); Moniz et al. (in press)) and real engineering sys-
ems (Nichols et al. (2006)) with notably more complexity. We
ave found that these attractor-based and signal-processing
ethods are able to distinguish very subtle effects. Thus, we

re eager to work on the problem with a more complex model
nd possibly real time series data, if available, to determine
nteractions when they cannot be discerned by other methods.

.3. Consistency of results for short time series

he importance of these results probably does not lie in the
act that we were able to uncover the relationships in the
ood web, but that the conclusions that we can reach using
hese statistics were robust to a 300–400 point time series. In
his case, there is no hope of using attractor reconstruction
rder to investigate the dynamics of the system; it is gener-
lly conjectured (see, e.g., Tsonis, 1992) that in order to reach
easonable conclusions with attractor reconstruction meth-
ds it is necessary to have at least 10,000 points per dimension

n a reconstruction. Although this requirement has not been
heoretically proven and there have been studies that show a
horter time series can still yield meaningful results (Nichols
t al., 2005) a long time series from ecological field data would
end to be fewer than 500 observations. Thus, the fact that the
elationships between information statistics persisted in the
00–400 point time series is perhaps more important than the
ood web topology itself. The information statistics used here
re as fully nonparametric as classical attractor reconstruc-
ion approaches (i.e., they make no assumptions whatsoever
bout the form of the underlying dynamical system). The dif-

erence is that the information statistics can exploit the fact
hat the complete state vector is observed. Having the attrac-
or in hand rather than needing to reconstruct it from a single
tate variable, we could use information statistics to directly
8 ( 2 0 0 7 ) 145–158 155

probe the interrelationships among state variables and get
meaningful results without requiring implausibly long data
series for ecological systems.

6. Conclusions and recommendations

The information statistics correctly identified the food web
topology in this simple model, including verifying the prefer-
ence of one resource over another for a given consumer. These
results were valid even for relatively short time series lengths.
Thus, there is reason for further investigation of the use of
information statistics in this context.

Although the blind analysis of the food web topology
was able to correctly identify the relationships between the
resources and consumers and the preference for one resource
over another, the large (3-to-1) ratio of the preference of
resource1 over resource2 for consumer1 and the correspond-
ing preference for resource2 was not apparent from the
statistics. However, this model did include some noise and
although the community matrix could not be recovered from
the data, the information statistics, when taken as a whole,
were able to discern the preferences clearly for ecologically
realistic time series lengths. More generally, by combining
evidence from mutual information and transfer entropy statis-
tics, we were able to distinguish between direct interactions (A
eats B or competes with B) and indirect interactions (A and B
are both eaten by C), which is essential for correctly recovering
food web topology.

This was a very simple food web topology. More study is
needed on more complicated systems, especially those with
multiple trophic levels, to see if the relationships persist in the
information statistics. Although the method looks promising
in light of the results for short time series lengths, those results
also need to be demonstrated to be consistent for different
models or known relationships in real data before the method
can be verified.

Our information-statistical analyses represent an extreme
alternative to a conventional parametric analysis such as
(A.2), avoiding any presumption that functional form of the
data-generating process is either known a priori or can be
inferred from the data. There is quite a bit of “model space” in
between these extremes, raising the the possibility of extract-
ing sharper information from observational data on food
webs without having to make questionable assumptions about
unstudied processes.

For example, semiparametric approaches replace (A.2) by
a general regression model Ri(t) = Fi(N(t), t) and the func-
tions Fi are estimated by nonparametric regression. But given
limited data, completely nonparametric estimation of the
high-dimensional functions Fi is problematic at best. Success
typically depends on being able to impose a priori qualita-
tive constraints. Semiparametric analyses have recently been
applied successfully to data on laboratory populations (e.g.,
Wood, 2001; Lingjaerde et al., 2001; Moe et al., 2002, 2005; Ellner
et al., 2002), using constraints based on knowledge of how the

study species progresses through different stages of the life
cycle, and about which developmental steps were likely tar-
gets for density-dependence. Would it also be possible for an
information-statistical analysis to be structured so as to gain
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precision by exploiting solid basic knowledge about species’
life cycles?

Finally, recall that inference based on multiple time series
of abundance is the least direct of the three approaches listed
for investigating species interactions. Direct investigation of
interaction mechanisms and use of species removal experi-
ments should yield stronger inferences. However, these more
direct approaches typically require substantial effort and have
not been carried out in most existing food webs. Approaches
based on time series of abundances have potential utility for
use with existing data obtained from the various animal mon-
itoring programs established around the world (e.g., Peterjohn
and Sauer, 1993; Gregory, 2000; Yoccoz et al., 2001; Webber et
al., 2004). Even if a time series from one location has fewer than
300 observations, use of the data concatenation technique
proposed by Banbrook et al. (1997) on time series from adja-
cent locations with similar habitats may yield a long enough
time series to employ the techniques described in this paper
successfully. Thus we believe that efforts to use information-
theoretic statistics in food web investigations using such data
hold promise.

Acknowledgements

We wish to acknowledge Gustavo Rohde of Carnegie Mellon
University for helpful conversations regarding the interpre-
tation of the transfer entropy statistic. We also thank Paul
Dresler and the U.S. Geological Survey Inventory and Mon-
itoring program for support of this project. We thank the
Andrew W. Mellon Foundation for support of the work of
S.P. Ellner.

We thank the referees, especially Robert Ulanowicz, for
helpful suggestions regarding improvement of this paper and
some very useful and thought provoking comments regarding
information theory in ecology.

Appendix A. Detailed description of the
parametric analysis

The following analysis was done by a team member who
had knowledge of the the structure of the data-generating
model. A short summary is included in the body of the paper;
details appear here. The following calculation describes a con-
ventional parametric analysis using approaches like those in
Laska and Wootton (1998), Ives et al. (1999, 2003) and Ellner et
al. (2002).

Replacing (for the moment) the exogenous forcing zt by its
expected value E[zt] = 1, the model has the form:

R(t) = AN(t) + b (A.1)

where N = (�4, �4, �4, �4), R is the vector whose ith component
is (1/�i)(d�i/dt) = (d log �i/dt), A is a constant matrix of coeffi-
cients and b is a vector of coefficients (the constant terms in

the expressions for Ri). The interpretation of (A.1) is that popu-
lation change results from net per-capita birth and death rates,
and each of those rates is (by assumption) a linear function of
the vector of population densities. The goal of the data anal-
2 0 8 ( 2 0 0 7 ) 145–158

ysis is to estimate the entries of A, which specify the pattern
and strength of interactions among the species.

Given the weekly time-series “data”, the values of R can be
estimated well by first interpolating the values of log �i(t) with
a cubic spline, and then numerically differentiating the fitted
spline. This simple method works here because the “data” are
error-free and the data-generating dynamics are smooth. With
real data, much more work would have to go into estimating
the derivative. Using the estimated Ri(t) values, the matrix A
can be estimated by linear regression. As an upper bound on
what could be achieved this way, while taking account of the
exogenous forcing zt, we fit a functional form that is very close
to the truth:

Ri(t) = s
(1)
i

(t mod 52) + s
(2)
i

(t) + ai1�1 + ai2�2 + ai3�3 + ai4�4 (A.2)

Here s
(j)
i

denotes a spline function of its argument. The two
spline terms on the right-hand side of (A.2) are therefore a
regular seasonal component (a function of week mod 52) and
a smooth but otherwise irregularly varying function of time,
which corresponds to the actual structure of the forcing zt

in the data-generating model. In the data-generating model
both resource species experience the same forcing function,
but that constraint was not imposed in the regression analysis.

The matrix A = (aij) used in generating the “data” was

⎡
⎢⎢⎢⎣

−0.125 0.00 −1.0 −0.3

0.000 −0.15 −0.3 −1.0

1.000 0.30 −0.1 0.0

0.300 1.00 0.0 −0.1

⎤
⎥⎥⎥⎦

We ran the model to generate 15 years of monthly values,
and discarded the first 5 years. In 100 replicates of this process,
the elementwise average estimates were⎡
⎢⎢⎢⎣

−0.12 0.02 −0.87 −0.18

0.01 −0.12 −0.14 −0.85

1.00 0.30 0.00 0.00

0.30 1.00 0.00 0.00

⎤
⎥⎥⎥⎦

with standard deviations⎡
⎢⎢⎢⎣

0.06310 0.04401 0.11067 0.10454

0.07661 0.05158 0.13281 0.12555

0.00011 0.00017 0.00005 0.00004

0.00017 0.00027 0.00008 0.00006

⎤
⎥⎥⎥⎦

We note again here that the coefficients for the con-
sumers (species 3 and 4) are estimated almost perfectly and
that those for the resources (species 1 and 2) are not: the
consumer impact coefficeints are all underestimated. The
sampling variability is high enough to frequently reverse the
sign of the smaller consumption coefficient having true value
−0.3.

For the second parametric analysis (8), both models were
fitted using the gam function in mgcv package of R (Wood, 2004,

2005; R Core Development Team, 2005). The significance of
the nonlinearity ((8) versus (A.2)) can be assessed by an F-test
using anova.gam. For the four species, the (true) hypothesis of
linearity was rejected at the ˛ = 0.05 level in (100, 100, 90, 90)
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ut of 100 replicates, and rejected at the ˛ = 0.01 level in (100,
00, 81, 80) out of 100 replicates.
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