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Summary. Some monitoring programs for ecological resources are developed as
components of larger science or management programs and are thus guided by a
priori hypotheses. More commonly, ecological monitoring programs are initiated for
the purpose of surveillance with no a priori hypotheses in mind. No conceptual
framework currently exists to guide the development of surveillance monitoring pro-
grams, resulting in substantial debate about program design. We view surveillance
monitoring programs as providing information about system dynamics and focus on
methods for extracting such information from time series of monitoring data. We
briefly describe methods from the general field of nonlinear dynamics that we believe
may be useful in extracting information about system dynamics. In looking at the
system as a network of locations or components, we emphasize methods for assessing
coupling between system components for use in understanding system dynamics and
interactions and in detecting changes in system dynamics. More specifically, these
methods hold promise for such ecological problems as identifying indicator species,
developing informative spatial monitoring designs, detecting ecosystem change and
damage, and investigating such topics as population synchrony, species interactions,
and environmental drivers. We believe that these ideas and methods provide a use-
ful conceptual framework for surveillance monitoring and can be used with model
systems to draw inferences about the design of surveillance monitoring programs. In
addition, some of the current methods should be useful with some actual ecological
monitoring data, and methodological extensions and modifications should increase
the applicability of these approaches to additional sources of actual ecological data.
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“It is far better to foresee even without certainty than not to foresee
at all.”
- H. Poincare

“Physics envy is the curse of biology”
- J. Cohen

1 Introduction

The monitoring of ecological systems is an activity that is increasingly com-
mon throughout the world (e.g., [YNB01]) and, as such, is beginning to be
accompanied by increased scrutiny, as scientists and natural resource man-
agers seek to insure that scarce funds are expended wisely. Scrutiny has been
focused on topics ranging from the reasons for monitoring, to the selection of
system attributes to be monitored, to the manner in which selected system
attributes are estimated. Indeed, Yoccoz et al. ([YNB01]) challenged those
engaged in the conduct or development of monitoring programs to pose the
3 basic questions: why, what and how? They emphasized that answers to the
what and how questions are conditional on the answer to the question, why
monitor?

We begin by asserting that monitoring is not a stand-alone activity but
is most usefully viewed as a component of a larger program of either science
or management ( [Njd00, YNB01, NW06]). The role of monitoring in most
scientific programs is to provide data on changes in system variables that
can be used to confront predictions from models of competing hypotheses
about system dynamics ( [HM97, WNC02, NW06]). This confrontation can
lead to a rejection of hypotheses under some approaches to science and to
a change in the likelihoods or degrees of faith associated with the different
hypotheses under other approaches to science. The roles of monitoring in
most management programs similarly include confrontation with predictions
from models of competing hypotheses about system responses to management,
as well as provision of estimates of system state for use in making state-
dependent decisions, and estimates of state and related variables for use in
judging management effectiveness.

We view these uses of monitoring in the conduct of science and manage-
ment as ideal, in the sense that monitoring results play a key role in discrim-
inating among competing hypotheses and in making informed management
decisions. However, we believe that many monitoring programs have not been
developed to discriminate among a priori hypotheses about system behavior or
to provide estimates of system state for the purpose of making state-dependent
management decisions. We will refer to such monitoring that is not designed
with reference to guiding hypotheses about system behavior or response to
management as surveillance monitoring. We do not view surveillance moni-
toring as an efficient way to use conservation funds, yet a substantial number
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of such programs exist worldwide. Here we consider approaches to the analy-
sis of such monitoring data that might be useful for trying to learn about a
system and its dynamics.

We contend that, in contrast to hypothesis-driven monitoring, no method-
ological framework has been presented to guide the design and analysis of
surveillance monitoring data. We have noted that hypothesis-driven monitor-
ing is used to conduct either science or management. In the case of science,
there is a well-developed body of statistical theory about how to test hypothe-
ses using collected data, both in general (e.g., [Fis47, Fis58] and specifically
in the case of ecological data ([Hur84, SR92, SG93, WNC02]). In the case of
management, a similarly well-developed body of decision theory is available
to guide use of data to make optimal decisions in the face of uncertainty (e.g.,
[ Wil82, Wil89 , Wil96 , WNC02]).

In contrast, there is a noted absence of true theory guiding the collec-
tion and use of data in ecological surveillance monitoring programs. However,
investigators in other disciplines have developed theory that is relevant to in-
vestigative uses of such data, formally addressing such questions as: Are the
measured data sufficient for us to understand the evolution of the dynamical
system? In particular, do the measured data contain enough information to
reconstruct dynamical objects of interest and recover coordinate independent
dynamical properties? ([OY03]). Our contention is that this work in other
fields can potentially be useful in developing a general theory guiding both
the collection of time series of ecological data and the use of such data in
a manner that extracts maximal information about the underlying systems
of interest. Although many of the methods used in the fields of physics and
nonlinear dynamics were developed for long time series of relatively noise-free
data, we believe that these methods have significant potential to

1. provide a framework for extracting information from ecological time series,
2. provide us with upper limits on the information extraction that is possible,
3. be used with data from model systems, perhaps leading to generalizations

that may be useful, for example, in the design of monitoring programs,
and

4. be adapted or extended to deal with the sorts of short, noisy data that tend
to characterize ecological time series (e.g., [Bou96, Bou01, PSWM00]).

We consider surveillance monitoring programs that provide time series of
one or more state variables of a system of interest. State variables might be
abundances of different species (e.g. a network of interconnected species), or
perhaps multiple observations of the same species from a network of differ-
ent spatial locations within the system. The task at hand is then to consider
the time series as sources of information about the system of which they are
a part and consider the kinds of information that can be extracted as well
as the methods needed to accomplish this extraction. We focus on methods
developed for nonlinear systems, because of the apparent prevalence of non-
linearity in ecological systems and processes (e.g., [Sch81, SEK86, HHETG93,
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CCDD95, CDCD97, DDCC95, DDCC97, CCDDH03, Tur03 ]). In particu-
lar, we focus on methods for assessing coupling (dynamical interdependence;
[SSCBS96, PCH97])of different potential system components or state vari-
ables, for purposes such as

1. identifying whether 2 variables are indeed components of the same system,
2. investigating the nature of interactions among system components, and
3. drawing inferences about one or more system components by monitoring

another component(s).
4. investigating coupling within a network of spatial locations or interrelated

species.

The methodological approaches to the investigation of coupling for non-
linear systems have been categorized as based on either a geometric portrait
of the system dynamics or on the information content of dynamical system
components. As Sauer ([ Sau04]) noted about the geometric approach, “The
capability of these methods for nonlinear systems, built on advanced recon-
struction techniques, far exceeds the reach of conventional signal processing.”
Our objective is simply to consider the use of these approaches to extract
information about systems and their behaviors from time series data that are
collected in the absence of a priori hypotheses and corresponding models.

We note that although we are applying the following techniques to the
specific settings of ecological monitoring of a network of either interrelated
species or a network of spatial locations, the techniques are suited to inves-
tigation of the same phenomena in a general network setting. Throughout
this chapter we view the terms network and system similarly - that is, as a
group of entities or components that are not independent (e.g. , abundances
of multiple species at different locations) and that have linked or connected
dynamics.

We emphasize that the focus of this chapter is on the use of time series
data to draw inferences about ecological systems and networks. Use of these
and other approaches to inference should result in the development of mod-
els of ecological systems. Such system models can then be analyzed using a
variety of approaches (e.g., graph theory) for purposes such as decomposition
and identification of compartments and subsystems( [ABB06, CGC06]) and
identification of ”important” species ([JOBL08, Jor09, BJP09]).

2 System Identification

By system identification, we simply mean that we would like to use time series
from one or more state variables from a system of interest to draw inferences
about characteristics of the entire system. Ecological systems can contain
large numbers of potential state variables (e.g., populations of various species
at different locations in a spatially extended system), such that attempts
to monitor all such variables would be extremely difficult and expensive, at
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best, and more typically impossible (e.g., [MZSM04]. However, approaches
from nonlinear dynamics offer hope to the ecologist of being able to learn
something about the dynamics of an entire multidimensional system based
on a time series of one or a few state variables. This possibility causes us to
consider the use of these same approaches to identify those state variables
that yield the greatest information about system dynamics.

A useful geometric description of dynamics for a multidimensional sys-
tem is based on the concept of an attractor, which is a closed set of points
in state space (e.g., defined by the abundance of each interacting species in
the system). System trajectories beginning on the attractor remain on it,
whereas trajectories beginning near (specifically, in the associated attracting
set) the attractor will converge to it (for more precise definitions of attrac-
tor, see [Mil85, Str94] ). The attractor is thus the portion of state-space in
which the system tends to remain and to which it returns following perturba-
tion. The geometry of an attractor thus contains a great deal of information
about system dynamics. Indeed, ecological interest in a systems attractor is
analogous to interest in stable equilibria for systems of multiple competing
species (e.g., [May73]). The strict definition of an attractor assumes that the
underlying dynamics are deterministic. However the concept of state-space
can be quite useful with or without such an assumption. A state-space view
of system dynamics provides the practitioner with a picture of the relative
frequencies (probabilities) of the system returning to a given state. Many of
these geometric approaches are based on local probability density estimates
(or closely related measures on an attractor; e.g., [ER95] ) and/or the transi-
tion probabilities of moving from one location to another in the state space.
This connection between geometric and probability density descriptions is
important to the understanding of how attractor-based approaches to sys-
tem identification can be applied to ecological systems. Thus, attractor-based
methods may be appropriately viewed as a special subset of density-based ap-
proaches to time-series analysis. This view also blurs the distinction between
approaches based on geometry versus information content.

The concept of an attractor is typically applied to stationary systems, such
that the rules governing system dynamics are not changing over time periods
of interest. If systems themselves are changing over a period of interest, then
the concept of an attractor may no longer be useful. However, note that such
change presents problems, not only for attractor-based approaches, but also
for virtually any approach to the conduct of science. Science is based on pre-
dictions, and if systems change so rapidly that there is no basis for prediction
(historic system dynamics provide no information about future dynamics),
then there is little hope for doing anything other than describing change. A
second comment concerns the possibility of using geographic replication to
draw inferences about system attractors. The assumption of stationarity is
needed for single time series in order to provide temporal replication or mul-
tiple looks at system dynamics as the system travels through state space. If
multiple independent looks at system dynamics are provided by geographic



6 L.J. Moniz, J.D. Nichols, J.M. Nichols, E.G.Cooch, and L.M.Pecora

replication, then systems need not be stationary for long periods in order to
draw inferences about their respective attractors. However, we note again that
learning about system dynamics during one time period may not be informa-
tive about future times if substantive changes in dynamics occur. Later in this
paper, we focus on detecting such change. Finally, we note recent work indicat-
ing that the concept of an attractor still provides a useful description for sys-
tems that experience specific kinds of change, for example systems subjected
to either deterministic or stochastic forcing ( [SBDH97 , Sta99, SBDH03]).

Construction of an attractor for a multi-species ecological system ap-
pears to be a daunting task, requiring time series of abundances for each
species in the system. However, Takens embedding theorem ([Tak81], also
see [Yul27, Whi36, PCFS87, SY91]) provides an approach by which the at-
tractor of a multidimensional system can be qualitatively reconstructed (such
that the reconstructed attractor is diffeomoprhic - geometrically equivalent
- with respect to the original attractor) from a time series of data from a
single system state variable (e.g., a single species). Specifically, delay coordi-
nates of the single series are used to construct new pseudo time series from
the original data. Reconstruction requires selection of the number of delay
coordinates to use (the embedding dimension) and the length(s) of the delay
([Wil97, PMNC07]).

This basic approach to attractor reconstruction has been used successfully
for long deterministic time series of single state variables from systems that are
not of very high dimension. If time series data from more than one system state
variable are available, then delayed copies from multiple time series can be
used in the embedding, again presenting an interesting optimization problem
that requires selection of appropriate state variables and their respective delay
copies ([PMNC07]).

Ecological time series are typically short and noisy, leading to the ob-
vious question of what to do in this situation. In some cases, addition of
noise obscures underlying determinism, whereas in other cases attractor-based
approaches still provide reasonable inference about deterministic structure
(Schaffer et al. 1986). This result anticipated the demonstration by Casdagli
([Cas92]) that attractor reconstruction also applies to input-output systems
with stochastic input. It is likely that reasonable models of state variables of
ecological systems will include deterministic components as well as term(s)
representing the actions of exogenous variables that are modeled as random
noise. Despite the existence of such random noise terms, Cheng and Tong
([CT92]) note that the search for low dimensional attractors is a meaningful
signal extraction exercise.

3 Coupling and Comparative Dynamics

The preceding material involved efforts to draw inferences about an entire
dynamical system based on the time series of one or more system state vari-
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able(s) ([PMNC07]). In addition, we would frequently like to use two or more
time series to address two general classes of problems. The first class involves
investigation of interactions or coupling among state variables hypothesized
to be components of the same system. Such investigations not only permit
inference about the structure of ecological systems (e.g., nature and degree
of interaction), but also address the ability to draw inferences about one sys-
tem component by monitoring another. The second class of problem involves
comparison of two time series, perhaps of the same system component, but
from different locations or periods of time, in order to test for possible dif-
ferences in system dynamics. Such comparisons will be relevant to inferences
about change in ecological systems, regardless of whether or not change is
hypothesized to be associated with an identified perturbation.

3.1 Coupling

If two state variables are components of the same system, then they exhibit
dynamical interdependence ([SSCBS96, PCH97]). The existence of dynamical
interdependence underlies the ability to reconstruct a systems attractor from
a time series of a single state variable. Coupling between different biological
state variables implies the existence of one of a number of kinds of inter-
actions of substantial interest to ecologists. If different species are involved,
then trophic (e.g., predator-prey, food web) or competitive interactions are
suggested. For populations of the same species at different locations, active
dispersal can result in dynamical interdependence. Linear cross-correlation
has been used frequently by ecologists to investigate relationships between
state variables, especially single species populations at different locations (
[RKL98 , BIL99, Koe99, KR02, PF02]). Linear cross-correlation assumes a
very specific functional relationship that is symmetric in its argument and de-
fines coupling in terms of second order correlations only, i.e. E[x(t), y(t+T )],
where x(t), y(t) are the values of two state variables at time t. Here we con-
sider methods that are based on the entire probability density structure (i.e.,
correlations of any order) and are therefore more generally applicable and ca-
pable of dealing with nonlinear systems. The methods we consider also lead
to inferences about asymmetries between system components. These asym-
metries can involve information and/or dynamical influence and are of great
potential interest to ecologists ([Njm05, NMNPC05]).

Attractor-based approaches

Some methods for investigation of coupling are based on reconstructed at-
tractors for each of the 2 state variables of interest. Continuity statistics
are based on the fact that if 2 state variables belong to the same system,
then their respective attractors must be related by a continuous function (
[PCH95 , PCH97, MPNTW04]). Estimation of continuity between two system
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variables involves realizing the mathematical definition of continuity in an al-
gorithm. To this end, one can use the algorithm developed in [[MPNTW04]].
This algorithm first focuses on a local region defined by a single fiducial point
on 1 attractor (designated the source) and including its near neighbor points,
and the corresponding neighborhood on the other attractor (designated as the
target) defined by points with the same time indices as those on the source.
The continuity statistic reflects the degree to which the points in the region
on the source attractor map to a local region on the target attractor (indi-
cating greater likelihood of continuity) or are instead widely scattered across
the target attractor (indicating smaller likelihood of continuity). Computa-
tions are based on a number of fiducial points across the source attractor, and
inference is based on average values of these continuity statistics. Continuity
statistics are not expected to be the same in both directions (i.e., when the
roles of target and source attractors are reversed), reflecting any asymmetries
in connectivity between the 2 system components.

Mutual prediction ([SSCBS96]) is another approach to investigation of
coupling that is based on reconstructed attractors from two time series. The
approach assesses the degree to which dynamics of one attractor can be used
to predict the dynamics of another. If the two attractors indeed belong to the
same system, then their dynamics should follow similar dynamical paths. A
fiducial point is randomly selected from one attractor, and the neighborhood
local to this point is selected from the other attractor. This neighborhood is
based strictly on spatial proximity, and there is no necessary relationship be-
tween the time indices of the fiducial point and the points in the corresponding
neighborhood on the other attractor. The trajectories of these neighborhood
points are then used to forecast the dynamics on the original attractor, and
the difference between predicted and actual dynamics provides a metric re-
flecting predictive ability. As with continuity, predictive ability is assessed for
a large number of points across the attractor and an average value computed.
Mutual prediction can in fact be used as a test for continuity ([SSCBS96]).
Both continuity and mutual prediction between attractors can be asymmetric,
reflecting differences in information flow between system components.

This discussion has focused thus far on 2 state variables suspected to be
components of the same system or network. We note here that it is also pos-
sible to build a multivariate attractor using information from multiple system
state variables. It is then possible to use either continuity or mutual prediction
to assess coupling of a single state variable and the multivariate reconstruction
based on a number of other system components (e.g., [NMNPC05]).

These methods and others to be described in this section have seen little
use in ecological settings, so we will illustrate some of them using time se-
ries data generated from a 2-species, spatially distributed, ecological model.
The predator-prey model was introduced by Pascual ([Pas93]) and further
explored by Little et al. ([LEPNKSCS96]) and Nichols et al. ([NMNPC05])).
The model describes system dynamics via dimensionless variables for predator
(h) and prey density (p) along a 1-dimensional spatial gradient, with location
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designated as x. System dynamics are specified as follows:

∂p

∂t
= rxp(1− p)−

ap

1 + bp
h+ d

∂2p

∂x2
, (1)

∂h

∂t
=

ap

1 + bp
h−mh+ d

∂2

∂x2
h,

rx = e− fx.

Reflective boundary conditions are assumed at x = 0,1 with

∂p

∂x
=
∂h

∂x
= 0

Parameters include predator-prey coupling a, prey carrying capacity b,
predator death rate m, diffusion coefficient d, and the intrinsic growth rate
of the prey population rx, which is a function of space and reflects a linear
gradient in prey resource abundance. Some parameter values were fixed as in
[Pas93], m = 0.6, d = 10−4, e = 5.0, and b = 2.0. This model is continuous
with respect to time and system state (predator and prey abundances are real-
valued rather than integers), and will thus provide reasonable approximations
in some situations and not in others (e.g., [DS04]). However, we note that the
methods we describe should be applicable to discrete time and/or state models
as well. The spatial network of predator and prey density is particularly suited
to the following methods that describe connections within the network of
observed variables. To illustrate continuity and mutual prediction, the above
described model was integrated for n=1000 time steps at spatial locations
xi = 0.01, 0.02, · · · , 0.99, 1.00 using resource gradient slope of f = 1.4. The

dynamics for lattice site xi are given in state space by the vector X
(i)
t =

(P
(i)
t , H

(i)
t ). We assess both the mutual prediction (figure 1) and continuity

(figure 2) metrics between state vectors X
(i)
t , X

(j)
t i, j = 0.01 . . . 1.00.

Both approaches are clearly capable of identifying asymmetries in the
coupling among the various lattice sites. In general, there is stronger evi-
dence of continuity mapping dynamics at the low end of the resource gradient
(x = 1.00) to those at the high resource end (x = 0.00) than vice-versa. Sim-
ilarly, the dynamics at the low resource end do a better job (on average) of
predicting dynamics at the high resource end. By highlighting asymmetries
in spatial coupling, these results suggest a possible monitoring strategy (see
later discussion and Nichols et al. 2005, Moniz et al. 2007b). The results in
figures 1 and 2 are based on attractors reconstructed using the time series
of both predator and prey state variables. However, if only data from a sin-
gle state variable are available, results of Takens theorem can be employed
to reconstruct the attractor using delay coordinates to obtain similar results
([NMNPC05]). This possibility leads to interesting questions about optimal
allocation of resources to monitoring programs (e.g., one or more species at
one or more locations).
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Fig. 1. Mutual prediction computed for predator-prey dynamics at different spatial
cell locations of a spatially extended system (equation 1), with prey resource gradient
extending from low (cell x = 1) to high (x = 0) resources with resource slope
parameter f = 1.4. Predator-prey data from one model cell location are used to
predict predator-prey dynamics at another location (predicted cell location). Scaled
predictive ability is indicated by color and ranges from high (0, blue) to low (1, red)

Information-theoretic approaches

Although attractor-based approaches are potentially useful in exploring cou-
pling in dynamical systems, assessment of the direction of information flow
is arguably ad hoc. Alternative approaches based on information theory have
been recommended for the investigation of coupling, in part because such
approaches involve formal characterization of the direction of information
flow. Because these approaches have seen little use in ecology and because
of our belief that they hold promise, we will describe two such information
theory-based approaches in somewhat more detail than methods presented
above (we discuss the joint utility of attractor-based and information theory
approaches later). Let Y and Z represent 2 state variables reflecting 2 dy-
namical processes, and assume that we are investigating the possibility that
they are coupled and actually components of the same system. We obtain
simultaneous measurements of each system resulting in 2 time series, yt and
zt, where t = 1 . . .M is a discrete time index. Each measurement is viewed as
a discrete random variable with underlying probability distribution function
p(yt) and p(zt), respectively, and joint probability distribution p(yt, zt). The
amount of information (in bits) about one state variable that is gained by
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Fig. 2. Continuity computed for predator-prey dynamics at different spatial cell
locations of a spatially extended system (equation 1), with prey resource gradient
extending from low (cell x = 1) to high (x = 0) resources with resource slope
parameter f = 1.4. The continuity statistic reflects the function relating predator-
prey dynamics at one location (source) to dynamics at another location (target).
Scaled continuity is indicated by color and ranges from high (0, blue) to low (1+,
red)

knowing the value of the other variable is given by mutual information (e.g.,
[VSw88, Wil97]):

I(Y, Z) =
∑
y,z

p(yt, zt) log2

p(yt, zt)

p(yt)p(zt)
(2)

Mutual information (2) is a Kullback entropy ([Kul59]) in that it reflects
the excess information needed to encode p(yt, zt) when erroneously assum-
ing that the 2 variables are statistically independent ([Sch00]). In order to
compute mutual information, the probability distribution functions may be
estimated using “bin counting” or other kernel density estimation approaches
(e.g., see [VSw88, Wil97, Njm05]). The directionality of information flow or
transport may be addressed by modifying the above expression for mutual
information to include a time delay in one of the variables ([VSw88, Njm05]):

I(Y,ZT ) =
∑
y,z

p(yt, zt+T ) log2

p(yt, zt+T )

p(yt)p(zt+T )
. (3)
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where T indicates the delay. This quantity is referred to as time delayed mu-
tual information. The investigator searches for the delay, Tmax, for which
I(Y,ZT ) is a maximum. Tmax > 0 suggests information transport from Y
to Z, whereas Tmax < 0 suggests information transport from Z to Y . When
the system of interest is characterized by a spatial component, and when Yt
and Zt+T can be measured at different points in space, then the functional
relationship between Tmax and distance separating the 2 locations can even
be used to draw inferences about the nature or form of the coupling function
([VSw88, Njm05]). A more formal approach to inference about information
flow was recently suggested by Schreiber ([Sch00]), who recommended a fo-
cus on state transition probabilities rather than on static probabilities. This
approach, transfer entropy, considers systems that can be characterized as
stationary Markov processes of specified order, k, where transition probabili-

ties are denoted as p(yt+1 | yt, yt−1 . . . yt−k+1) = p(yt+1 | y(k)t ). The approach
then considers another possible system state variable, Z, and asks whether
knowledge of this variable provides additional information about the dynam-
ics of Y . In the absence of information flow between Z and Y , the following
equality should hold:

p(yt+1 | y(k)t ) = p(yt+1 | y(k)t , z
(l)
t ). (4)

Transfer entropy, TZ→Y , is a Kullback entropy focused on the deviation of
the system from the generalized Markov property (4); i.e., on the extent to
which extra information about the dynamics of Y is provided by Z:

TZ→Y =
∑
yz

p(yt+1, y
(k)
t , z

(l)
t )log2

p(yt+1 | y(k)t , z
(l)
t )

p(yt+1 | y(k)t )
. (5)

Transfer entropy is not symmetric, as information flow can be much stronger
in one direction than another.

As with attractor-based approaches, the above descriptions of time-delayed
mutual prediction and transfer entropy considered 2 variables, but it is possi-
ble to develop multivariate analogs. For example, mutual information can be
used to consider the additional information provided by one variable about
the multivariate distribution of a number of other system variables ([PT95]).
Similarly, transfer entropy can be used to assess the additional information
provided by one variable about the transition probabilities of a number of
component state variables.

Perhaps the biggest drawback to information theoretic approaches is that
their estimation can be difficult. Estimation of probability densities from time-
series data is generally challenging as the results will often depend consider-
ably on how the data are “binned”. Kernel density estimates tend to provide
good results and are used in most works on information theoretic approaches
(in this work as well). A good discussion of the estimation of both mutual
information and transfer entropy can be found in [[KS02]. In the cited work,
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Fig. 3. Time delayed mutual information, I(P x;P x=0.96
T ), for prey populations

recorded at a target location (x = 0.96) and various other locations (x =
0.70, 0.75, 0.80, 0.85, 0.90, 0.94). Results based on the spatially extended predator-
prey model of equation1 with resource gradient characterized by slope f = 1.4.

the convergence of kernel-based estimators of both quantities is discussed. Of
the two quantities transfer entropy is the more difficult to estimate and no
guarantees can be made regarding convergence. An alternative estimator of
transfer entropy was proposed in [MK02] which purportedely works well for
limited data. Reliable estimation will likely remain the core issue regarding
implementation of information-theoretics in ecological applications for some
time.

As an example of the potential utility of IT approaches, consider the
predator-prey model of equation 1 for resource gradient slope of f = 1.4.
Using the time-delayed mutual information we might explore how informa-
tion (e.g., about predator/prey abundance) moves or flows from one spatial
location to another. Let P x=0.96 denote the prey time series recorded at spatial
location x = 0.96. Following the work of Vastano and Swinney ([VSw88]), we
can examine I(P x=0.94;P x=0.96

T ) in order to examine how information moves
from one lattice site to the other. Figure 3 shows the time-delayed mutual
information computed between time series from several lattice sites at various
levels of spatial separation. The “target” lattice site was fixed as x = 0.96
for each case. As shown in the plot, the “source” lattice site varied between
x = 0.50 and x = 0.94. Several observations can be made from Figure 3. First,
the dominant peak of the mutual information occurs for positive lags indicat-
ing that information is moving from the high resource end to the low resource
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Fig. 4. Average transfer entropy from each site on the resource gradient to all other
sites for 3 resource gradients, f = 0.9 (blue),f = 1.4 (red), f = 1.9 (magenta),
where 0 indicates high resources and 1 indicates low resources (model of equation
1). Solid lines indicate average Tprey→predator whereas dashed lines indicate average
Tpredator→prey.

end ([FS86]). In addition the peak occurs at larger and larger lags as the de-
gree of spatial separation increases (information takes longer to travel larger
distances), providing inference about the speed of information transport, and
thus the rate of prey dispersal ([Njm05]). Similarly, we can use the transfer
entropy to assess directionality of information transport. Figure 4 shows plots
of average transfer entropy from each site to all other sites for 3 values of slope
of the resource gradient, f = 0.9, f = 1.4 , f = 1.9 (see equation 1). The 2
plots for each slope show

1. (1) the average TEHx→Px′ , reflecting the extra information about prey
transitions (averaged over all locations x′ 6= x ) provided by knowing the
predator abundance at location x (solid plots), and

2. (2) the average TEPx→Hx′ , reflecting the extra information about preda-
tor transitions (averaged over all locations x′ → x ) provided by knowing
the prey abundance at location x (dashed plots).

Two general comments emerge about information flow in this spatially ex-
tended predator-prey system. First, on average, more information about sys-
tem dynamics is provided by knowledge of predator or prey abundance to-
wards the low-resource end of the resource gradient. This result is consistent
with the observations made previously using the continuity, mutual prediction,
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and mutual information metrics. Second, at locations near the high-resource
end of the gradient, prey provide more information about predator dynam-
ics than vice versa. Near the low-resource end of the plots, predators provide
more information about prey, especially for the 2 steepest resource gradients,
f = 1.4, f = 1.9. Results of this sort have clear implications for monitoring
programs and concepts such as that of indicator species.

Combining Attractor-Based and Information-Theoretic Approaches

As noted above, inference about directionality of information flow based
on attractor-based approaches is indirect, whereas the information-theoretic
transfer entropy metric was developed specifically to assess directionality of
information flow. However, transfer entropy does not always yield unambigu-
ous inference either. For example, values of transfer entropy that approach 0

[i.e., when
p(yt+1|y(k)

t ,z
(l)

T
)

p(yt+1|y(k)
t

→ 1] can arise from 2 distinct situations ([MNN07]).

One possibility is that the 2 systems are unrelated, such that zt is completely
independent of yt. The other possibility is that the systems governing zt and
yt are identical, such that knowledge of yt is equivalent to knowledge of zt.
In the latter situation, information about zt may be useful in a monitoring
context, whereas in the former case, information about zt should not be use-
ful. Moniz et al. ([MNN07]) have proposed the use of continuity statistics to
resolve this ambiguity.

3.2 Comparative Dynamics

Methods for comparative dynamics focus on the detection of differences in
dynamics of 2 systems based on 2 or more time series. Frequently, the ques-
tion of interest will involve a single system that is observed for some initial
period of time. Then, the system is perturbed, and, following a period of pos-
sible transient dynamics, a second time series is obtained. The question is
whether the perturbation has resulted in a change in system dynamics. The
perturbation may be imposed experimentally or may instead involve natural
phenomena. In some cases, the investigator may not identify a specific per-
turbation, but may instead be interested in possible damage or other changes
that might occur as a system ages and is exposed to natural environmental
variation. A number of questions about ecosystem change and damage are
of interest to ecologists and natural resource managers. Both attractor-based
and information-theoretic methods can be used to detect changes in system
dynamics.

Attractor-based approaches

Attractor-based approaches such as mutual prediction and continuity statis-
tics can be used with 2 time series of the same state variable, representing
periods before and after some perturbation of interest. If long-term system
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dynamics remain unchanged following any transients produced by the pertur-
bation, then the mutual prediction algorithm and continuity statistics should
reflect similar attractor geometries, whereas changes in dynamics should lead
to dissimilar attractor geometries. “Recurrence plots” ([EKR97]) were de-
veloped for the purpose of detecting and exploring nonstationarities in time
series. They represent a graphical technique designed to highlight structure by
focusing on the number of times that a system returns to a dynamical state.
Assume a dynamical system comprised of r state variables, xt, that is directly
measured at M points in time, t = 1 . . .M or obtained via attractor recon-
struction. The recurrence matrix, Rts(where s and t denote different points
in time), is simply a matrix of 0’s and 1’s with entries defined as Rts = 1
when xt and xs are close together (where “close” is defined as ‖ xt− xs ‖< ε,
where ε is a threshold parameter and ‖ . ‖ takes the Euclidean norm of the
r-dimensional distance vector), and Rts = 0 for ||xt − xs|| > ε. It was demon-
strated in [RO2008] that the recurrence matrix can be related to a thresholded
version of the local covariance matrix. The selection of the threshold ε will
depend on the application. Too small a threshold and no recurrences will
be visible (the plot will be all white except for the diagonal) while to large a
threshold includes all points in the signal thus obscuring any structure present
in the local covariance. A reasonable rule of thumb that has worked well in
several applications is to take ε = 0.1σ , where σ is the standard deviation of
the time series.

Unlike continuity and mutual prediction, recurrence plots do not require
preservation of the true underlying dynamics in the reconstructed attractor.
Rather, recurrence plots simply allow the practitioner to visualize local co-
variances in the data as a function of time (for stationary, ergodic processes,
summing Rts over s and dividing by the number of data points, M , gives
a probability density estimation of the system local to point “t”). Because
recurrence plots are simply probing local density structure we do not have to
faithfully reconstruct an “attractor” or even assume one exists.

Recurrence plots are always populated on the main diagonal and sym-
metric about it for constant ε. Analysis of recurrence plots is based on di-
agonal and vertical line structures, where a line is defined as l > 1 adjacent
points with no intervening white (nonpopulated) spaces (e.g., [TGZW96 ,
IB98, GC00, MWSK02]). Vertical lines reflect traditional ideas of autocorre-
lation, whereas diagonal structures reflect deterministic dynamics. Some kinds
of purely stochastic dynamics (e.g., Gausian white noise) are characterized by
an absence of structure, as nearby points at one time, t, have little chance of
being neighbors again the next time, t+ 1.

Recurrence plots can be modified to deal specifically with comparative
dynamics of 2 processes, x(n) and y(n), by forming a cross-recurrence matrix
(e.g., [NTS06]) based on the distance between points in the state space. With
this approach, CRts = 1 for ‖ xt − ys ‖< ε, and CRts = 0 for ‖ xt − ys ‖> ε.
In the case of cross-recurrence plots, line structures relate to the probability
that the 2 systems obey the same dynamics. In the case of ecosystem change,
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the two processes could represent the same state variable(s) before and after
a perturbation.

Recurrence quantification analysis ([ WZ94]) refers to the computation
of various summary statistics from recurrence and cross-recurrence plots or
matrices. For example, percent recurrence is the percentage of darkened points
in the plot, whereas percent determinism is the percentage of darkened points
occupying significant line structures, where significant is often just taken to
mean 2 or more adjacent points. These statistics can then be compared for
recurrence plots made from time series before and after a perturbation, or
statistics can be computed directly for the cross-recurrence plots based on the
2 time series.

As an example, again consider the predator-prey model described in 1.
Figures 5 shows recurrence plots generated from the prey dynamics at spatial
locations 0.13 (upper plot) and 0.96 (lower plot). Both plots were generated
using a recurrence length scale of ε = 0.1σ where σ is the standard devia-
tion of the time series. The dynamics at location 0.13 are largely periodic,
hence the banded structure of the recurrence plot. The period of the oscilla-
tion corresponds directly to the spacing between the bands. Prey dynamics at
location 0.96 are chaotic ([Pas93]) and exhibit a more complicated recurrence
(probability) structure. If the diffusion constant d is modified to include tem-
poral fluctuations, then a very different recurrence structure emerges. Letting
d(t)∗ = d + 5(10−5 sin(2πgt)), where g = 0.001 samples/unit time (slow peri-
odic modulation of diffusion coefficient), one sees different recurrence patterns
(Figures 6 ). The continuous, periodic bands at lattice site 0.13 are replaced
by wavy patterns that are clearly being modulated by the time dependency
in the diffusion term. The local probability density structure at lattice site
0.96 is also altered by the influence of d∗. However, in this case the complex-
ity of the original recurrence plot makes it difficult to detect the influence of
the nonstationarity in the diffusion term. This simple example illustrates the
types of changes that can be observed when examining recurrence structure
in time series data.

Information-theoretic approaches

Time-delayed mutual information and transfer entropy were described above
as methodological approaches for the detection of coupling and information
flow between system components. Non-transient changes in system dynamics
following a perturbation to the system should be reflected in changes in cou-
pling and information flow among system components. In the case of ecological
monitoring, the 2 state variables or components might be 2 different species
at the same location(s) or the same species at 2 different locations that are
sufficiently close to be dynamically interdependent (see [Njm05, NMNPC05]).
The approach to change detection would involve computation of time-delayed
mutual information or transfer entropy for 2 system components during the
period before, and then following, a perturbation, where the post-perturbation
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Fig. 5. Figure 5a and b - Recurrence plots (both axes reflect time) of prey dynamics
at spatial location 0.13 (upper) and location .96 (lower) along a spatial resource
gradient from high (0) to low (1) prey resources. Recurrence length scale is ε = 0.1σ,
where σ is the standard deviation of the time series. Dynamics are based on the
predator-prey model of equation 1, with constant diffusion coefficient, d.
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Fig. 6. Figure 6a and b - Recurrence plots (both axes reflect time) of prey dynamics
at spatial location 0.13 (upper) and location .96 (lower) along a spatial resource
gradient from high (0.00) to low (1.00) prey resources. Recurrence length scale is
ε = 0.1σ , where σ is the standard deviation of the time series. Dynamics are based on
the predator-prey model of equation 1, with diffusion coefficient varying temporally
according to d(t)∗ = d+ 5(10−5 sin(2πgt) , where g = 0.001 samples/unit time (slow
periodic modulation of diffusion coefficient).
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data come after a delay to allow for transient dynamics. Differences in these
metrics would reflect changes in system dynamics, whereas similarities would
indicate an absence of change, at least with respect to the selected system
components.

This section on comparative dynamics has focused on the comparison of
1 or more time series at 2 different times (e.g., before and after a pertur-
bation). We view this approach as potentially the most useful in assessment
of ecosystem change. However, we also note that comparative dynamics may
sometimes involve comparison of observed dynamics with that expected under
a null hypothesis of interest. For example, Nichols et al ([NSTSP06] ) have
proposed the use of the described information-theoretic approaches for dam-
age detection in the field of structural health monitoring. One approach to
this problem would be to compare a structure before and after the occurrence
of suspected damage. However, [NSTSP06] note the advantages of being able
to assess damage in the absence of baseline or pre-damage data. They equate
nonlinearity with damage and then test for nonlinearity as a means of testing
for damage. Specifically, they take time series of 2 system components from
a structure that may be damaged (in their case, sensors placed at 2 different
locations on the structure). They then create surrogate data sets from these
original data sets that retain the exact linear cross correlation between the 2
measured variables. However, randomization is used to destroy higher-order
correlations that may exist, thus producing surrogates that represent the null
hypothesis of linearity. Comparison of this null hypothesis with the alternative
of nonlinear dynamics is accomplished using time-delayed mutual information
and transfer entropy, and damage (nonlinear coupling) is readily detected us-
ing this approach ([NSTSP06]). The relevance of this approach depends on
the reasonableness of equating nonlinearity and damage. This view of damage
as nonlinearity is very common in engineering applications, but is also held
by some in ecosystem thinking ([Patt75]).

4 Surveillance Monitoring and Information Extraction

In the following discussion, we return to the theme that the described methods
of extracting information from time series data form the basis of a concep-
tual framework for surveillance monitoring. We provide a linkage between the
described methods and ecological inquiry, considering topics and questions of
interest to ecologists and suggesting specific methods that may be useful in
addressing them.

4.1 System Identification

Ecological systems represent “enormously complex associations of species
which interact in diverse ways. As a matter of practical necessity, field ecol-
ogists can rarely specify, much less quantify, all of the interactions” ([Sch81],
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p 383). In the face of such unknowable complexity, ecologists have chosen to
monitor the dynamics of one or a few species in hopes of learning something
about the entire system. As noted above, Takens ([Tak81]) embedding theo-
rem (also see [Yul27, Whi36, PCFS87, SY91, OY03, PMNC07]) provides a
theoretical basis for such hopes by demonstrating the possibility of learning
about the dynamics of an entire system using a time series of data from a
single (or small number of) system state variable(s).

We noted that attractor reconstruction using delay coordinates provides a
geometric representation of system dynamics that provides information about
the portions of state space in which we expect to find the system most of time.
Such reconstructions also provide a basis for computing metrics (e.g., mutual
prediction, continuity) for inference about coupling of system components.

4.2 Indicator Species

Ecologists have long recognized that presence or dynamics of a single species
or group of species can be used as indicators of both physical and biological
characteristics of systems in which they are found ([Odu71] and references
therein). This recognition has evolved to the point where “indicator species”
have become a central concept in ecological monitoring. The basic premise
is that monitoring all system components is impossible for all but the sim-
plest systems, so some selection of components to monitor is required (e.g.,
[Sim98, MZSM04]). The literature of ecology and conservation biology con-
tains many discussions of indicator species including such topics as a rationale
for their use, methods for their selection and criticisms of the concept (e.g.,
[LVT88, Nos90, Noo03, MZSM04]). Noon ([Noo03], p. 43) specifies that in-
dicator species should “provide information on the state of the unmeasured
resources and processes of the focal ecological system”, and emphasizes that
“the ultimate success or failure of the [monitoring] program may be deter-
mined by this one step.”

We believe that Takens ([Tak81]) theorem provides a theoretical justi-
fication for the concept of indicator species, insofar as it demonstrates the
potential for time-series of a single species to be used to reconstruct (‘indi-
cate’) the dynamics of the system over the entire state space. Furthermore,
the described methods for assessing coupling and dynamical interdependence
provide a natural framework for considering indicator species as well as objec-
tive approaches for their selection. Both attractor-based methods (continuity
and mutual prediction) and information-theoretic methods (time-delayed mu-
tual information and transfer entropy) can provide asymmetric estimates of
coupling, reflecting differences in information flow between either 2 measured
system components or between 1 system component and a multivariate set of
other components. The general work of Pecora et al ([PMNC07]) on selection
of time-delayed versions of system state variables for attractor reconstruction
is very relevant to the selection of a set of indicator species that provides
the most information about the dynamics of the entire system. For model
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systems designed to mimic real-world ecosystems, single state variables could
be investigated one at a time for their information content with respect to
dynamics of the entire system. Such an exercise could, for example, provide
general inferences about trophic level (our example use of transfer entropy
for a predator-prey system) or other characteristics (e.g., generalists or spe-
cialists) of species having relatively high and low information content. The
methods can also be used, or adapted for use, with actual monitoring data
for example systems to provide inferences about which monitored species is
providing the most information about the studied system. It would also be
possible to compute the loss in information incurred by eliminating species
from a list of those monitored. We believe that transfer entropy may hold the
greatest promise for the investigation of indicator species, although we cer-
tainly do not rule out any of the described approaches that focus on coupling.

4.3 Species Interactions

The discipline of community ecology focuses on interactions between pairs of
species. Trophic interactions, competitive interactions, and mutualistic inter-
actions are all of interest to ecologists, yet they are not always readily observ-
able. In some situations, it may be useful to pose questions about dynamically
important interspecific interactions using time series data from monitoring
programs ([IDCC03]). The described methods for investigation of coupling
may be useful in such situations. Time series of 2 species suspected to in-
teract can be investigated using attractor-based (continuity statistics, mutual
prediction) or information-theoretic (mutual information, transfer entropy)
approaches. Resulting inferences about coupling will be indicative of either
dynamic interactions or dynamic responses to the same driving variable, a di-
chotomy that can be resolved in some cases using approaches such as transfer
entropy and time-delayed mutual information ([Njm05]). Asymmetric inter-
actions between species are especially relevant to some ecological hypotheses
(e.g., [VSi02 ]), and the ability of the described methods to detect and quan-
tify asymmetric coupling will thus be useful. Initial efforts to draw inferences
about simple food web structure based solely on time series data from web
components have been encouraging ([MCENN07]).

4.4 Spatial Coupling, Population Synchrony, and Spatial Sampling

In addition to investigating possible interactions among different species at the
same locations, ecologists are interested in possible coupling of populations
of the same species at a network of different spatial locations. Time series of
monitoring data from different locations are frequently used to draw inferences
about population synchrony ([BIL99, Koe99, CS03, Caz04]). When evidence
of such synchrony is found, two general classes of underlying mechanisms
are typically considered (e.g., [RKL98 , BIL99, Koe99, Njm05]). One involves



Coupling in Ecological Surveillance Monitoring 23

active dispersal, with animals moving between locations. The other possibility
involves response to a common environmental driver ([Mor53]).

Both attractor-based and information-theoretic approaches have been
shown to be useful in assessing spatial coupling using time series generated
from a spatially extended predator-prey model. Nichols et al. ([NMNPC05])
used both continuity and mutual prediction statistics to detect coupling and
to draw inferences about its relative magnitude. Asymmetric spatial coupling
was observed and was interpreted in terms of a prey resource gradient, and
resultant spatial variation in dynamics. A comparison of these results with re-
sults based on linear cross-correlation led to the conclusion that the nonlinear
approaches were superior for this model system. Nichols ([Njm05]) then used
time-delayed mutual information with this same model system to draw more
formal inferences about information flow between spatial locations within this
system. He was further able to reject the hypothesis that a common envi-
ronmental driver was responsible for the interdependent dynamics and even
drew inferences about the nature of the dispersal functions responsible for the
coupling ([Njm05]). Mutual information has been used in conjunction with
surrogate data sets to detect population synchrony in 2-patch model systems
and in actual data sets ([CS03, Caz04])

In addition to investigating the factors responsible for dynamics of spa-
tially extended ecological systems, these methods should be useful in providing
insight into the relative value of different spatial sampling designs. Despite the
abundance of work on static designs for spatial sampling (e.g., [Tho02]), there
has been relatively little consideration of designs for sampling dynamical sys-
tems that exhibit variation over both time and space (see [WR99 , MNN07]
for exceptions). Stated differently, whereas ecologists have expended much ef-
fort discussing the concept of indicator species, there has been little attention
devoted to consideration of possible indicator locations, locations that pro-
vide maximum information about dynamics of the system. As we noted, it is
possible to use mutual information and transfer entropy to directly assess the
information flow between multiple state variables (e.g., the abundances of a
species at multiple locations within a system) and a single state variable (e.g.,
abundance of one species at one location) and vice versa ([MNN07]).

It is possible to use these methods on data from model systems with re-
source gradients or gradients in abundance, to try to gain insight into the
characteristics of locations that provide most information about system dy-
namics. For example, the results presented above for the spatially extended
predator-prey system based on the 4 different coupling metrics (continuity,
mutual prediction, time-delayed mutual information, transfer entropy) indi-
cated greater information flow from locations of high to low prey resource
abundance than vice versa, a result consistent with the greater number of dis-
persers going from areas of high abundance and resources to areas of low
abundance and resources ([NMNPC05, Njm05]). This flow of information
leads to an asymmetry in the information content of time series from dif-
ferent locations, such that low-resource locations provide more information
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about high-resource locations than vice versa (Figures 1, 2, 3, 4). This gen-
eral inference based on multiple locations and different resource gradients is
consistent with the recent result of Jonzen et al. ([JRP05]) that in source-sink
systems (sensu Pulliam [Pul88]), with dispersal from the source location to
the sink but not vice versa, it is often most efficient to monitor the sink habi-
tat. These results lead to the natural, yet henceforth unexploited, suggestion
that asymmetric dispersal may be an important determinant of information
content of monitoring data from various locations in ecological systems (also
see [MNN07]).

It may also be possible to directly determine the most information-rich
locations using data from spatially extended monitoring programs. Of course
the sampling design problem can be treated more generally as one of finding
the species-location combinations that provide the most information about
system dynamics (see [NMNPC05]). This combination of ideas about indicator
species and spatial sampling points to a potentially productive approach of
treating surveillance monitoring as a joint optimization problem.

4.5 Environmental Drivers

Our discussion thus far has focused on coupling between system components,
whereas we are also frequently interested in environmental variables that may
drive system dynamics. Pascual and Ellner ([PE0]) have developed approaches
for identifying the driving variable from a set of candidates using time series of
both potential drivers and system state variables. They focused on the period
of the environmental driver and noted that more general approaches should
be possible. All of the methods described above for assessment of coupling
should be useful for this purpose.

The information-theoretic approaches seem especially well-suited for iden-
tification of environmental drivers, and indeed Nichols ([Njm05]) identified a
periodic driver for a model predator-prey system using mutual information.
Cazelles ([Caz04]) has used information-theoretic approaches in conjunction
with symbolic dynamics and the generation of surrogate data to investigate
coupling in ecological time series. He demonstrated superiority of this ap-
proach to linear cross-correlation in model systems. He also used the approach
successfully with actual ecological time series and found evidence of an asso-
ciation between sheep abundance on the island of St. Kilda and the North
Atlantic Oscillation index, a composite environmental variable ([Caz04]).

4.6 Assessment of Ecosystem Change and Damage

Ecologists are frequently interested in comparing time series of state variables
collected before and after some perturbation of interest (e.g., environmental
change, management action) and even during two time periods not separated
by some discrete event. The question is simply, have system dynamics been



Coupling in Ecological Surveillance Monitoring 25

altered or do they remain the same in the 2 periods? Mutual prediction pro-
vides one approach to investigating change, as prediction from one attractor
to the other should be possible only if the system dynamics in the 2 time pe-
riods remain similar. Similarly, recurrence plots for the two time series should
differ if dynamics have changed.

Another approach to detection of change involves the assessment of cou-
pling between 2 state variables before and after the perturbation. Changes in
system dynamics are reflected in changes in coupling of system components.
Indeed, engineers place multiple sensors on structures and use evidence of
changes in coupling between locations to detect damage in structural health
monitoring (e.g., [NNTSTV04]). Thus, we can envision using either attractor-
based or information-theoretic approaches to assess coupling between 2 state
variables before and following a perturbation.

Finally, we noted above that sometimes the described methods can be
used with a single time series, or with time series of 2 state variables from
the same time period, to draw inferences that may be relevant to change or
damage. Recurrence plots have been used to detect nonstationarity of time
series, and this approach could be used with ecological data, as in the above
predator-prey example. It was also noted above that structural damage is
frequently equated with nonlinear responses to vibration. It is thus possible
to generate surrogate data for 2 coupled time series under the null hypothesis
of a linear relationship, and to test this against the alternative of nonlinearity
([NTS06]). Some ecologists view nonlinearity as a signal of ecosystem damage
([Patt75] ), although we doubt that this will generally be true. However, if
the distinction between damaged and undamaged is better captured by some
other contrast in dynamical pattern, it may be possible to design surrogates
that reflect other null hypotheses for testing ([ SS2000]).

5 Summary

We began this review with 3 basic observations. First, ecological monitor-
ing programs are of two basic types with respect to design and methods of
analysis: hypothesis-driven programs developed for the conduct of science or
management and surveillance programs developed as general sources of eco-
logical information. Second, many ecological monitoring programs in place
today are best characterized as surveillance monitoring. Third, virtually all of
the methodological development associated with monitoring program design
and data analysis has occurred for hypothesis-driven programs, with little
quantitative attention having been devoted to surveillance monitoring. In this
review, we have viewed the analysis of data from surveillance monitoring pro-
grams as an exercise in information extraction and as a specific example of
the more general problem of determining interactions, information flow and
synchronization from observations of an ecological network.
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We have reviewed methods developed primarily in other disciplines for an-
alyzing time series and suggested that they provide a natural methodological
framework for surveillance monitoring programs. In some cases, the methods
provide an upper limit to what can be learned from time series data. In other
cases they can be used with ecological models to design surveillance monitor-
ing programs. We believe that such investigations hold promise for possibly
drawing general inferences about information content of monitoring data from
different classes (e.g., trophic levels) of species and different locations char-
acterized by different levels of immigration and emigration. We also believe
that work with model systems can be used to explore the idea of surveillance
monitoring design as a joint optimization problem involving both species and
space. Finally, in still other cases the methods described in this review should
be directly useful for analysis of certain kinds of ecological data.

Some of the described methods can be used in the general process of system
identification. Other methods are useful for identifying important environmen-
tal drivers and for assessing the strength of species interactions. If multiple
locations are monitored, then spatial coupling of populations can be identi-
fied, and general inferences about dispersal are even possible. Some methods
are well suited to investigating possible changes in long-term system dynamics
occurring either generally over time or in association with an identified event.

The attractor-based approaches discussed above were developed for long
time series (many thousands of points) from deterministic systems, whereas
the information-theoretic approaches appear to be more flexible and widely
applicable. Three practical issues that arise when considering application of
these methods to ecological time series are short series lengths, stochasticity,
and stationarity. We believe that much can be learned from model systems for
which none of these issues should be a problem. In addition to such exercises,
time series can be generated from models, and the relevance of stochastic-
ity and series length to inferences resulting from the described methods can
be directly assessed. Recent efforts of this type have been encouraging, with
information-theoretic approaches being useful with short time series and in
the presence of stochasticity ([MCENN07]). Several approaches are available
for assessing system stationarity and have been used for identifying ecological
time series appropriate for the analyses described herein ([MNN07]).

Nevertheless, for actual ecological monitoring data, much work remains.
With respect to series length, some ecological time series (e.g., meteorological
variables such as air temperature and wind speed, water levels in certain sys-
tems) are sufficiently long for attractor-based approaches ([KSE04, MNN07]).
Time series of animal abundances do not tend to be nearly long enough for
some of the described approaches, and the likely solution involves more specific
parametric modeling (e.g., [ET95, TE00] ) than is necessary for long series.
The use of null hypothesis surrogate data sets has also proven useful with short
data sets arising in ecology and other disciplines ([MK02, CS03, Caz04]). With
respect to the issue of determinism and stochasticity, the recent assessment
of Schreiber ([Sch00], p 3) seems relevant. “Neither naive enthusiasm to ex-
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plain all kinds of unsolved time series problems by nonlinear determinism is
justified, nor is the pessimistic view that no real system is ever sufficiently
deterministic and thus out of the reach for analysis. At least, chaos theory
has inspired a new set of useful time series tools and provides a new language
to formulate time series problems - and to find their solutions.”

We acknowledge the support of Paul Dresler and U.S. Geological Survey
inventory and monitoring program for research on these topics.
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