Robust Estimation w/ RANSAC
Dealing with outliers

• Estimating E relies on correspondences
• What if correspondences are incorrect?
• Fitting: find the parameters of a model that best fit the data
• Other examples:
 • least squares linear regression
Example: Fitting lines

\[y = mx + b \]

\((y_i, x_i)\)

\[y = mx + b \]
Linear regression

![Graph showing linear regression with residual error]
Outliers in linear regression

Problem: Fit a line to these datapoints

Least squares fit
Outliers

• Grossly incorrect
• Dominate objective
• Lead to incorrect solutions
• Must be eliminated
• But how do we know which data points are outliers?
More general problem setup

• Given
 • A noisy dataset \(D = \{ p_1, p_2, ..., p_N \} \) with some completely incorrect outliers
 • Example 1: Line fitting: \(\{ (x_1, y_1), ..., (x_n, y_n) \} \)
 • Example 2: Fundamental matrix: \(\{ (\vec{p}_1, \vec{q}_1), (\vec{p}_2, \vec{q}_2), ..., (\vec{p}_N, \vec{q}_N) \} \)
 • A set of parameters \(\theta \) that need to be fitted
 • Line fitting: \(\theta = (m, b) \)
 • F estimation \(\theta = F, ||f|| = 1 \)
 • A cost function \(C(p, \theta) \)
 • Line fitting: \(C((x, y), (m, b)) = ||y - (mx + b)||^2 \)
 • F estimation: \(C((\vec{p}, \vec{q}), F) = p^T F \vec{q} \) (Reprojection error)
• Find \(\theta \)
Anna Karenina principle

• “Happy families are all alike; every unhappy family is unhappy in its own way.” – Leo Tolstoy, Anna Karenina

• Inliers *bound to agree with each other*

• Outliers are all outliers in different ways
 • *So assume outliers will not all point towards same hypothesis*

• More precise assumption:
 • Outliers either <50%
 • Or noisy points don’t all agree
Approach

• Search through all possible hypotheses
 • E.g., all possible lines

• For every point count number of potential *inliers*
 • Points that agree with the line

• Find line with maximum # of inliers
 • Since outliers don’t agree with each other, they won’t all lie on the same line
 • So the points on this line must be true inliers
Counting inliers
Counting inliers

Inliers: 3
Counting inliers

Inliers: 20
Which hypotheses?

• Sample hypotheses randomly?
 • Might sample useless hypotheses that doesn’t fit any data
• Only want hypotheses that fit *at least some data*
• Idea: sample minimum points to fit hypothesis
• This yields candidate hypothesis
RANSAC (Random Sample Consensus)

Line fitting example

Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC

Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
RANSAC

Algorithm:

1. **Sample** (randomly) the number of points required to fit the model (#=2)
2. **Solve** for model parameters using samples
3. **Score** by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence
Problem setup (again)

• Given
 • A dataset \(D = \{ p_1, p_2, \ldots, p_N \} \)
 • Example 1: Line fitting: \(\{ (x_1, y_1), \ldots, (x_n, y_n) \} \)
 • Example 2: Fundamental matrix: \(\{ (\vec{p}_1, \vec{q}_1), (\vec{p}_2, \vec{q}_2), \ldots, (\vec{p}_N, \vec{q}_N) \} \)
 • A set of parameters \(\theta \) that need to be fitted
 • Line fitting: \(\theta = (m, b) \)
 • F estimation \(\theta = F, ||f|| = 1 \)
 • A cost function \(C(p, \theta) \)
 • Line fitting: \(C((x, y), (m, b)) = ||y - (mx + b)||^2 \)
 • F estimation: \(C((\vec{p}, \vec{q}), F) = \vec{p}^T F \vec{q} \) (Reprojection error)
 • A minimum number needed \(k \)
 • Line fitting: 2
 • F estimation: 8
RANSAC (RAndom SAmple Consensus)

• Repeat:
 • Sample minimum number of points k to fit hypothesis
 • Fit hypothesis
 • Count number of inliers in entire dataset
• Choose hypothesis with most number of inliers
• Re-update hypothesis with estimated inliers
RANSAC - hyperparameters

- **Inlier threshold** related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- **Number of rounds** related to the percentage of outliers we expect, and the probability of success we’d like to guarantee
RANSAC

• An example of a “voting”-based fitting scheme
• Each hypothesis gets voted on by each data point, best hypothesis wins

• There are many other types of voting schemes
 • E.g., Hough transforms...
The correspondence problem
Till now

• Geometry of image formation
• Stereo reconstruction
 • Given 3D → 2D correspondence, find K, R, t
 • Given 2 images, correspondence, K, R, t, find 3D points
 • Given 2 images, correspondence, find F, E, R, t, 3D points
Till now

• Geometry of image formation

• Stereo reconstruction
 • Given 3D \rightarrow 2D correspondence, find K, R, t
 • Given 2 images, correspondence, K, R, t, find 3D points
 • Given 2 images, correspondence, find F, E, R, t, 3D points
Correspondence can be challenging
Harder case

by Diva Sian

by scgbt
Harder still?
Answer below (look for tiny colored squares...)

NASA Mars Rover images with SIFT feature matches
The correspondence problem
The aperture problem

- When viewed from a small “aperture”, correspondence is ambiguous.
The aperture problem

- Individual pixels are ambiguous
- Idea: Look at whole patches!
The aperture problem

• Individual pixels are ambiguous
• Idea: Look at whole patches!
The aperture problem

- Some local neighborhoods are ambiguous
The aperture problem
Sparse vs dense correspondence

- Sparse correspondence: produce a few, high confidence matches
 - Good enough for estimating pose or relationship between cameras
- Dense correspondence: try to match every pixel
 - Needed if we want 3D location of every pixel (e.g., stereo)
Sparse correspondences

• For many applications, a few good correspondences suffice
 • Camera calibration
 • Estimating essential matrix
 • Reconstructing a sparse cloud of 3D points

• Detect points that will produce good correspondences
• Match detected points from both images
Sparse correspondence pipeline

Interest point detector ➔ Feature descriptor ➔ Feature matching

Interest point detector ➔ Feature descriptor
Characteristics of good feature points

• Repeatability / invariance
 • The same feature point can be found in several images despite geometric and photometric transformations

• Saliency / distinctiveness
 • Each feature point is distinctive
 • Fewer “false” matches / less ambiguity
Goal: repeatability

- We want to detect (at least some of) the same points in both images.

No chance to find true matches!

- Yet we have to be able to run the detection procedure *independently* per image.

Slide credit: Kristen Graumanc
Goal: distinctiveness

• The feature point should be distinctive enough that it is easy to match
 • Should *at least* be distinctive from other patches nearby

Slide credit: Kristen Graumanc
Harris corner detector

• Let us tackle second goal
• Main idea: Translating patch should cause large differences
• An example of an *interest point detector*
Matching feature points

We know how to detect good points
Next question: **How to match them?**

Two interrelated questions:
1. How do we *describe* each feature point?
2. How do we *match* descriptions?
Feature descriptor

x_1 x_2

y_1 y_2
Feature matching

• Measure the distance between (or similarity between) every pair of descriptors
Invariance vs. discriminability

• Invariance:
 • Distance between descriptors should be small even if image is transformed

• Discriminability:
 • Descriptor should be highly unique for each point (far away from other points in the image)
Image transformations

• Geometric

 Rotation

• Photometric

 Scale
 Intensity change
Invariance

• Most feature descriptors are designed to be invariant to
 • Translation, 2D rotation, scale

• They can usually also handle
 • Limited 3D rotations (SIFT works up to about 60 degrees)
 • Limited affine transformations (some are fully affine invariant)
 • Limited illumination/contrast changes
Better representation than color: Edges
Towards a better feature descriptor

• Match *pattern of edges*
 • Edge orientation – clue to shape

• Be resilient to *small deformations*
 • Deformations might move pixels around, but slightly
 • Deformations might change edge orientations, but slightly
Invariance to deformation by quantization

Between 30 and 45
Invariance to deformation by quantization

\[g(\theta) = \begin{cases}
0 & \text{if } 0 < \theta < \frac{2\pi}{N} \\
1 & \text{if } \frac{2\pi}{N} < \theta < \frac{4\pi}{N} \\
2 & \text{if } \frac{4\pi}{N} < \theta < \frac{6\pi}{N} \\
\vdots \\
N - 1 & \text{if } 2(N - 1)\frac{\pi}{N} \\
\end{cases} \]
Spatial invariance by histograms

2 blue balls, one red box

Histograms:
- 2 balls
- 1 box
Rotation Invariance by Orientation Normalization

• Compute orientation histogram
• Select dominant orientation
• Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]
The SIFT descriptor

SIFT – Lowe IJCV 2004
Scale Invariant Feature Transform

Basic idea:

- DoG for scale-space feature detection
- Take 16x16 square window around detected feature
 - Compute gradient orientation for each pixel
 - Throw out weak edges (threshold gradient magnitude)
 - Create histogram of surviving edge orientations

Adapted from slide by David Lowe
SIFT descriptor

Create histogram

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor
SIFT vector formation

• Computed on rotated and scaled version of window according to computed orientation & scale
 • resample the window

• Based on gradients weighted by a Gaussian
Properties of SIFT

Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available:
Summary

• Keypoint detection: repeatable and distinctive
 • Corners, blobs, stable regions
 • Harris, DoG

• Descriptors: robust and selective
 • spatial histograms of orientation
 • SIFT and variants are typically good for stitching and recognition
 • But, need not stick to one
Learning-based correspondence

Learning interest points

Learning descriptors without supervision

Epipolar constraint \rightarrow Epipolar loss

Evaluation on relative pose estimation

Rotation accuracy on MegaDepth

Accuracy [%]

SIFT SuperPoint D2-Net ContextDesc R2D2 CAPS (SIFT kp.) CAPS (SuperPoint kp.)

Translation accuracy on MegaDepth

Accuracy [%]
The structure from motion pipeline

• Image matching
 • Estimate correspondences, use epipolar geometry + RANSAC to clean correspondences

• Incremental 3D reconstruction
 • Reconstruct keypoints from a pair of images
 • Add images in, do triangulation to reconstruct more 3D points

• Bundle adjustment
 • Take all 3D points and all cameras and minimize reprojection error

• Lots of details; decades of work in getting this right!
Image matching

• Given a collection of images
• Extract interest points and descriptors (e.g., SIFT)
• Look at image pairs and use correspondences to:
 • Decide if image pair has some overlap
 • Estimate E (or F) (or a homography H if no translation)
 • Use RANSAC for outlier sensitivity
• Obtain:
 • Verified image pairs
 • Verified inlier correspondences
 • Transformation between cameras (relative pose, i.e., R and t)
Incremental 3D Reconstruction

• Given scene graph
• Pick initial pair
 • Use inlier correspondences + known relative pose for triangulation
 • Obtain initial set of 3D points, say S
• Repeat:
 • Pick an unregistered image
 • Use known 3D points S and their corresponding 2D location to calibrate (Use RANSAC)
 • Use other correspondences between registered images to grow S
 • Bundle adjustment: minimize reprojection error for all points and cameras
• Output: 3D point cloud S and camera pose for every registered image
Bundle adjustment

$$\min_{\{P_c\}, \{X_k\}} \sum_{c,k} \rho_{ck} \left(\| \pi(P_c, X_k) - x_{ck} \|^2 \right)$$
The structure-from-motion pipeline

https://colmap.github.io