(Semantic / Instance / Panoptic) Segmentation
Semantic Segmentation
Evaluation metric

• Pixel classification!
• Accuracy?
 • Heavily unbalanced
• Intersection over Union
 • Average across classes and images
• Per-class accuracy
 • Average across classes and images
Things vs Stuff

THINGS
• Person, cat, horse, etc
• Constrained shape
• Individual instances with separate identity
• May need to look at objects

STUFF
• Road, grass, sky etc
• Amorphous, no shape
• No notion of instances
• Can be done at pixel level
• “texture”
Instance Segmentation
Evaluation Protocol

• Sort predicted instances by confidence
• Match prediction to closest annotation based on segment overlap
 • If segment overlap > threshold, correct

\[
\text{segment} = \frac{\text{overlap}}{\text{U}}
\]
Evaluation Protocol

Labels = [✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ...]
Scores = [0.90 0.87 0.82 0.78 0.70 0.69 0.60 ...]
Evaluation protocol

![Graph showing the Average Precision (AP)]
Panoptic Segmentation

(a) image

(b) semantic segmentation

(c) instance segmentation

(d) panoptic segmentation
Panoptic segmentation evaluation metric

$$PQ = \frac{\sum_{(p,g) \in TP} \text{IoU}(p, g)}{|TP|} \times \frac{|TP|}{|TP| + \frac{1}{2}|FP| + \frac{1}{2}|FN|}$$

- **Segmentation Quality (SQ)**
- **Recognition Quality (RQ)**
The COCO Challenge

mscoco.org

Challenges in data collection

• Precise localization is hard to annotate

• Annotating every pixel leads to heavy tails

• Common solution: annotate few classes (often things), mark rest as “Other”

• Common datasets: PASCAL VOC 2012 (~1500 images, 20 categories), COCO (~100k images, 20 categories)
Semantic segmentation using convolutional networks

Convolve with \#classes 1x1 filters
Semantic segmentation using convolutional networks

• Pass image through convolution and subsampling layers
• Final convolution with $\#$classes outputs
• Get scores for *subsampled* image
• Upsample back to original size
Transfer learning for semantic segmentation

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

Semantic segmentation using convolutional networks
The resolution issue

• Problem: Need fine details!
• Shallower network / earlier layers?
 • Not very semantic!
• Remove subsampling?
 • Looks at only a small window!
Solution 1: Image pyramids

Solution 2: Skip connections

- Upsampling
- Convolution

Coarse prediction

Finer prediction

Finest prediction
Skip connections

Skip connections

- Problem: early layers not semantic

Solution 3: Dilation

• Need subsampling to allow convolutional layers to capture large regions with small filters
 • Can we do this without subsampling?
Solution 3: Dilation

• Need subsampling to allow convolutional layers to capture large regions with small filters
 • Can we do this without subsampling?
Solution 3: Dilation

• Need subsampling to allow convolutional layers to capture large regions with small filters
 • Can we do this without subsampling?
Solution 3: Dilation

• Instead of subsampling by factor of 2: dilate by factor of 2

• Dilation can be seen as:
 • Using a much larger filter, but with most entries set to 0
 • Taking a small filter and “exploding”/ “dilating” it

• Not panacea: without subsampling, feature maps are much larger: memory issues
Solution 4: Conditional random fields

\[
P(y|x) = \frac{1}{Z} e^{-E(y,x)}
\]

\[
y^* = \arg \max_y P(y|x)
\]

\[
= \arg \min_y E(y, x)
\]

\[
E(y, x) = \sum_i E_{data}(y_i, x) + \sum_{i,j \in N} E_{smooth}(y_i, y_j, x)
\]
Solution 4: Conditional Random Fields

• Idea: take convolutional network prediction and sharpen using classic techniques

• *Conditional Random Field*

\[
y^* = \arg \min_y \sum_i E_{data}(y_i, x) + \sum_{i,j \in \mathcal{N}} E_{smooth}(y_i, y_j, x)
\]

\[
E_{smooth}(y_i, y_j, x) = \mu(y_i, y_j) w_{ij}(x)
\]

Label compatibility Pixel similarity
Inference in CRFs

• Problem: combinatorial optimization
• Variational methods: Approximate complex distribution $p(y)$ with simple distribution $q(y)$
• Mean-field approximation: $q(y)$ is independent distribution for each pixel:

$$q(y) = \prod_i q_i(y_i)$$

• If N pixels and K classes, basically N K-dimensional vectors
Mean field inference

• If we can find best q, solution is highest probability output for each pixel
• Try to match p with q by minimizing *Kulback-Leibler Divergence*

\[
KL(q||p) = \sum_y q(y) \log p(y) - \sum_y q(y) \log q(y)
\]

• Iterative process: in each iteration, do coordinate ascent on one q(y_i)
Mean field inference

• Coordinate descent on \(q_i(y_i) \)
• At each step, keep other pixels fixed and update one
• Each step (approximately):
 • Take current \(q_j(y_j) \) on all \(j \neq i \)
 • Use this to compute \(p(y_i|y_{-i}) \) where \(y_{-i} = \{y_j: j \neq i\} \)
 • Set \(q_i \) to this

\[
q_i \propto \mathbb{E}_{q_{-i}} \left[\log p(y_i|y_{-i}) \right]
\]
Fully Connected CRFs

• Typically, only adjacent pixels connected
 • Fewer connections => Easier to optimize
• Dense connectivity: every pixel connected to everything else
• Intractable to optimize except if pairwise potential takes specific form

\[E_{smooth}(y_i, y_j, x) = \mu(y_i, y_j)w_{ij}(x) \]
\[
 w_{ij}(x) = \sum_m w_m e^{-\|f_m(i) - f_m(j)\|^2}
\]

Gaussian edge potentials

\[w_{ij}(x) = \sum_m w_m e^{-\|f_m(i) - f_m(j)\|^2} \]

• What should \(f \) be?
• simple answer: color, position
Mean field inference for Dense-CRF

\[q_i(y_i = l) \propto \exp[-\psi_u(y_i)] - \sum_{l'} \mu(l, l') \sum_m w_m \sum_{j \neq i} e^{-||f_m(i) - f_m(j)||^2} q_j(y_j = l') \]

Unary compatibility

Message passing

\[q_i \propto \exp[-\psi_u^{(i)} - \mu \sum_j m_{j \rightarrow i}] \]
Fully Connected CRFs
Fully connected CRFs

Putting it all together

Other additions

<table>
<thead>
<tr>
<th>Method</th>
<th>mean IoU (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGG16 + Skip + Dilation</td>
<td>65.8</td>
</tr>
<tr>
<td>ResNet101</td>
<td>68.7</td>
</tr>
<tr>
<td>ResNet101 + Pyramid</td>
<td>71.3</td>
</tr>
<tr>
<td>ResNet101 + Pyramid + COCO</td>
<td>74.9</td>
</tr>
</tbody>
</table>

Alternative: coarse-to-fine prediction

• Inspiration 1: we are making independent predictions from each layer
• Inspiration 2: CRF-like approaches require iterated inference
• Inspiration 3: Coarse-to-fine refinement works because: coarse scales capture large scale structure coarsely, fine scales capture fine-scale structures
Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps. The arrows denote the different operations.
Learned upsampling

• Bilinear upsampling

\[
y[i] = \begin{cases}
x[i/2] & \text{if } i \text{ is even} \\
\frac{x[(i+1)/2] + x[(i-1)/2]}{2} & \text{otherwise}
\end{cases}
\]

• Assume fractional indices in x are 0
• Assume w[-1] = w[1] = 0.5, w[0] = 1
• Then

\[
y[i] = \sum_{k=-1}^{1} w[k] x[(i - k)/2]
\]
Learned upsampling

\[y[i] = \sum_{k=-1}^{1} w[k] x[(i - k)/2] \]

- Looks remarkably like convolution
- But output size is twice input size
- Filter \(w \) can be learnt!
- "Up-convolution", "Transposed convolution", "Deconvolution"
Instance segmentation
Till now

horse, person

Image Classification

Object Detection

Semantic Segmentation
Fine-grained Localization

Instance Segmentation
Evaluation Protocol

• Sort predicted instances by confidence

• Match prediction to closest annotation based on segment overlap
 • If segment overlap > threshold, correct
Evaluation Protocol

Labels = [✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ...]

Scores = [0.90 0.87 0.82 0.78 0.70 0.69 0.60]
Evaluation protocol

Average Precision (AP)
The COCO Challenge

mscoco.org

Two strategies

• Segment then classify
 • Use bottom-up techniques to come up with *segment* proposals
 • Classify segment proposals with convnets
 • Segmentation is category agnostic
 • Modification: use convnets to produce segmentation proposals

• Detect then segment
 • Use standard object detection to produce boxes
 • Segment boxes
 • Segmentation is *category specific*
Box proposals

- Use segmentation to produce ~5K candidates
Segment proposals

R-CNN for instance segmentation

Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez, Ross Girshick, Jitendra Malik. In ECCV 2014
Two strategies

• Segment then classify
 • Use bottom-up techniques to come up with segment proposals
 • Classify segment proposals with convnets
 • Segmentation is category agnostic
 • Modification: use convnets to produce segmentation proposals

• Detect then segment
 • Use standard object detection to produce boxes
 • Segment boxes
 • Segmentation is *category specific*
Detect then segment

• How should we segment a detected object?
• We have already computed features using ROI Pooling
• Idea: use features to predict mask!
 • Can either use a simple linear layer
 • Or can use convolution
 • Issue: can be very coarse
Skip connections with RoI pooling

- Finer-grained segmentation: tap into earlier layers

Skip connections for finer-grained details

Mask R-CNN

- With deeper networks and ROI Align, skip connections not needed (?)

Final results - what works?

• First detect, then segment
• Big problem for instance segmentation is object detection
• Mask R-CNN (Faster R-CNN + convolution on RoI Pooled feature to get masks) is good starting point