Image classification
Image classification

• Given an image, produce a label
• Label can be:
 • 0/1 or yes/no: *Binary classification*
 • one-of-k: *Multiclass classification*
 • 0/1 for each of k concepts: *Multilabel classification*
MNIST

- 2D
- 10 classes
- 6000 examples per class

1990’s
Caltech 101

- 101 classes
- 10 classes
- 30 examples per class
- Strong category-specific biases
- Clean images

MNIST

1990’s

2004
PASCAL VOC

• 20 classes
• ~500 examples per class
• Clutter, occlusion, natural scenes
ImageNet

- 1000 classes
- ~1000 examples per class
- Mix of cluttered and clean images
Why is recognition hard?

- Pose/articulation
- Scale
- Clutter/occlusion
- Lighting
Learning

• Key idea: teach computer visual concepts by providing examples

\[\mathcal{X} : \text{Images} \]
\[\mathcal{Y} : \text{Labels} \]
\[\mathcal{D} : \text{Distribution over } \mathcal{X} \times \mathcal{Y} \]

\[S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \ldots, n\} \]
Example

• Binary classifier “Dog” or “not Dog”
• Labels: \{0, 1\}
• Training set

\{(\text{dog}, 1), (\text{dog}, 1), (\text{bird}, 0), \ldots\}
Learning

• Key idea: teach computer visual concepts by *providing examples*

\[S = \{(x_i, y_i) \sim D, i = 1, \ldots, n\} \]

• Want to be able to estimate label \(y \) for *new images* \(x \)
 • Want to give score \(s(y, x) \) for each possible label \(y \), then pick highest scoring
 • Want to estimate \(y(x) \)
 • Want to estimate \(P(y|x) \), then pick most likely
Choosing a model class

• Will estimate a probability $P(y \mid x)$
• Any function that takes x as input and outputs probability distribution
 • $h: \mathcal{X} \rightarrow \mathcal{C}^{\mid \mathcal{Y} \mid}$ where \mathcal{C}^d is a probability distribution over d classes
 • Very large set of possibilities for h
• Constrain choice: Choose a family of possible functions H
 • Hypothesis class
Hypothesis class I: Classical models

• Choose \(h \) to be a linear classifier over some feature space.

• First extract features: \(z = \phi(x) \)
 - \(\phi \) is a fixed, hand-crafted function that converts images into features useful for recognition: \(\phi: \mathcal{X} \to \mathbb{R}^d \)

• Next multiply by a weight matrix to produce class scores: \(s = Wz \)
 - \(W \) is unknown a priori.

• Next normalize scores to a probability
 - \(P(y = k|x) \propto e^{s_k} \)
 - “Softmax”
Hypothesis class I: Classical models

• $h(x; W) = \text{softmax}(W \phi(x))$

• For different settings of W, get different hypotheses

• Hypothesis class $H = \{h(\cdot; W); W \in \mathbb{R}^{|Y| \times d}\}$

• W are parameters: index hypotheses in hypothesis class

\[f_1(x) = \phi(x) \quad f_2(z) = Wz \quad f_3(s) = \text{softmax}(s) \]
Choice of feature extractor?

- SIFT, HOG, GIST, BOW....
- The rest of the pipeline is very simple: linear function + softmax
- So heavy lifting must be done by feature extractor
- But how do we design feature extractor?
SIFT

• SIFT itself a series of simple, fixed steps
• Make some of them parametric?
Hypothesis class 2: Multilayer perceptrons

- Key idea: build complex functions by composing *many* simple functions

\[
\begin{align*}
f(x) &= Wx \\
g(x) &= \max(x,0) \\
f(x) &= Wx \\
g(x) &= \max(x,0) \\
f(x) &= Wx \\
f_3(s) &= \text{softmax}(s)
\end{align*}
\]
General recipe

• Fix hypothesis class
 - $h_w(x) = \text{softmax}\left(f_3\left(f_2\left(g\left(f_1(x, w_1)\right), w_2\right), w_3\right)\right)$
 - $h_w(x) = \text{softmax}(W\phi(x))$
• Define loss function
 - $L(h_w(x_i), y_i) = -\log p_{y_i}(x_i)$
• Minimize average (or total) loss on the training set
 $$\min_w \frac{1}{n} \sum_{i=1}^{n} L(h_w(x_i), y_i)$$
• How do we minimize?
• Why should this work?
Training: Choosing the best hypothesis

• Need to minimize an objective function.
• In general, optimization problem.
• If L is differentiable and h is differentiable: can do gradient descent

$$\min_w \frac{1}{n} \sum_{i=1}^{n} L(h_w(x_i), y_i)$$
Training = Optimization

• Simple solution: *gradient descent*

\[
\min_w f(w) \\

w^{(t+1)} = w^{(t)} - \alpha \nabla_w f(w^{(t)})
\]
Stochastic gradient descent

\[f(w) = \frac{1}{n} \sum_{i} L(h_w(x_i), y_i) \]

Objective function

\[\nabla_w f(w) = \frac{1}{n} \sum_{i} \nabla_w L(h_w(x_i), y_i) \]

Gradient

\[\nabla_w f(w) \approx < \nabla_w L(h_w(x_i), y_i) > \]

Gradient = average of per example gradients

\[\nabla_w f(w) \approx \nabla_w L(h_w(x_i), y_i) \]

Stochastic gradient descent using single examples

\[\nabla_w f(w) \approx \frac{1}{|B|} \sum_{k=1}^{B} \nabla_w L(h_w(x_{i_k}), y_{i_k}) \]

Stochastic gradient descent using minibatch
Stochastic gradient descent

• Randomly sample small subset of examples
• Compute gradient on small subset
 • Unbiased estimate of true gradient
• Take step along estimated gradient
Computing derivatives

\[\nabla_{\mathbf{w}} f(\mathbf{w}) \approx \nabla_{\mathbf{w}} L(h_{\mathbf{w}}(x_i), y_i) \]

• How do we compute gradient?
• Composition of functions: use chain rule

\[z_1 = f_1(x, \mathbf{w}_1) \]
\[z_2 = f_2(z_1, \mathbf{w}_2) \]
\[z_3 = f_3(z_2, \mathbf{w}_3) \]
\[l = L(z_3, y) \]

\[g_1 = \frac{\partial l}{\partial z_1} = g_2 \frac{\partial z_2}{\partial z_1} \]
\[g_2 = \frac{\partial l}{\partial z_2} = g_3 \frac{\partial z_3}{\partial z_2} \]
\[g_3 = \frac{\partial l}{\partial z_3} \]

\[\frac{\partial l}{\partial \mathbf{w}_1} = g_1 \frac{\partial z_1}{\partial \mathbf{w}_1} \]
\[\frac{\partial l}{\partial \mathbf{w}_2} = g_2 \frac{\partial z_2}{\partial \mathbf{w}_2} \]
\[\frac{\partial l}{\partial \mathbf{w}_3} = g_3 \frac{\partial z_3}{\partial \mathbf{w}_3} \]
The gradient of convnets
Risk

- Given:
 - Distribution \mathcal{D}
 - A hypothesis $h \in H$
 - Loss function L

- We are interested in Expected Risk:

 $$R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(h(x), y)$$

- Given training set S, and a particular hypothesis h, Empirical Risk:

 $$\hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y)$$
Risk

\[R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(h(x), y) \quad \hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y) \]

• By central limit theorem,

\[\mathbb{E}_{S \sim \mathcal{D}^n} \hat{R}(S, h) = R(h) \]

• Variance proportional to 1/n

• For randomly chosen \(h \), empirical risk is an *unbiased estimator* of expected risk
Risk

- Empirical risk unbiased estimate of expected risk
- Want to minimize expected risk
- Idea: Minimize empirical risk instead
- This is the **Empirical Risk Minimization Principle**

\[
R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(h(x), y) \\
\hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y)
\]

\[
h^* = \arg \min_{h \in H} \hat{R}(S, h)
\]
Generalization

\[R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(h(x), y) \]

\[\hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y) \]

\[R(h) = \hat{R}(S, h) + (R(h) - \hat{R}(S, h)) \]

- **Training error**
- **Generalization error**
Overfitting

• We are minimizing training error
• Empirical risk of chosen hypothesis *no longer* unbiased estimate:
 • We chose hypothesis based on S
 • Might have chosen h for which S is a special case
• Overfitting:
 • Minimize training error, but generalization error *increases*
Controlling generalization error

• Variance of empirical risk inversely proportional to size of S
 • Choose very large S!

• *Larger* the hypothesis class H, *Higher* the chance of hitting bad hypotheses with low training error and high generalization error
 • Choose small H!

• For many models, can *bound* generalization error using some property of parameters
 • Regularize during optimization!
 • Eg. L2 regularization
Controlling generalization error

• How do we know we are overfitting?
 • Use a held-out “validation set”
 • To be an unbiased sample, must be completely unseen
Putting it all together

• Want model with least expected risk = expected loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
 • Constructing large training sets
 • Reducing size of model class
 • Regularization
Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!
Loss functions and hypothesis classes

<table>
<thead>
<tr>
<th>Loss function</th>
<th>Problem</th>
<th>Range of h</th>
<th>\mathcal{Y}</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log loss</td>
<td>Binary Classification</td>
<td>\mathbb{R}</td>
<td>${0, 1}$</td>
<td>$\log(1 + e^{-y h(x)})$</td>
</tr>
<tr>
<td>Negative log likelihood</td>
<td>Multiclass classification</td>
<td>$[0, 1]^k$</td>
<td>${1, \ldots, k}$</td>
<td>$- \log h_y(x)$</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>Binary Classification</td>
<td>\mathbb{R}</td>
<td>${0, 1}$</td>
<td>$\max(0, 1 - y h(x))$</td>
</tr>
<tr>
<td>MSE</td>
<td>Regression</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>$(y - h(x))^2$</td>
</tr>
</tbody>
</table>
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

\[f(x) = Wx \quad \rightarrow \quad g(x) = \max(x,0) \quad \rightarrow \quad f(x) = Wx \quad \rightarrow \quad g(x) = \max(x,0) \quad \rightarrow \quad f(x) = Wx \]
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• $W(U(Vx)) = (WUV)x$
Reducing capacity

256 → 65K
Reducing capacity

W
Idea 1: local connectivity

- Inputs and outputs are *feature maps*
- Pixels only related to nearby pixels
Idea 2: Translation invariance

- Pixels only related to nearby pixels
Local connectivity + translation invariance = \textit{convolution}

\begin{tabular}{|c|c|c|}
 \hline
 5.4 & 0.1 & 3.6 \\
 \hline
 1.8 & 2.3 & 4.5 \\
 \hline
 1.1 & 3.4 & 7.2 \\
 \hline
\end{tabular}
Local connectivity + translation invariance = convolution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Local connectivity + translation invariance = convolution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution as a primitive
Invariance to distortions
Invariance to distortions

Image gradients

Keypoint descriptor
Invariance to distortions: Pooling
Invariance to distortions: Subsampling
Convolution subsampling convolution
Convolution subsampling convolution

• Convolution in earlier steps detects *more local* patterns *less resilient* to distortion
• Convolution in later steps detects *more global* patterns *more resilient* to distortion
• Subsampling allows capture of *larger, more invariant* patterns
Convolution with subsampling

- **Subsampling** = reducing resolution by dropping rows and columns
- Can be done with *strided* convolution
 - Stride of k means output pixel every k input pixels
- Typically done *without anti-aliasing*, though *anti-aliasing helps*\(^1\)

\(^1\)https://richzhang.github.io/antialiased-cnns/
Convolution with subsampling
Invariance to deformations
Effect of subsampling

• Same sized filters captures larger neighborhoods on lower resolution features
• Magnitude of translations / deformations reduce with lower resolution
• Convolution in earlier steps detects more local patterns less resilient to deformations / translations
• Convolution in later steps detects more global patterns more resilient to deformations / translations
• Subsampling allows capture of larger, more invariant patterns
Pooling

• Similar to convolution, but take max or $average$ across window for every channel

• No learnable parameters
Global Average Pooling

- Special case: take average across entire input space for every channel
- Useful for converting feature maps to vector of image features
Recall: Empirical Risk Minimization

\[
\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(h(x_i; \theta), y_i)
\]

Gradient descent update

\[
\theta(t+1) = \theta(t) - \lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L(h(x_i; \theta), y_i)
\]
Computing the gradient of the loss

\[\nabla L(h(x; \theta), y) \]

\[z = h(x; \theta) \]

\[\nabla_\theta L(z, y) = \frac{\partial L(z, y)}{\partial z} \frac{\partial z}{\partial \theta} \]
Learning with function compositions

- \(F = f_5 \circ f_4 \circ f_3 \circ f_2 \circ f_1 \)
- Suppose \(f_i \) has learnable parameters \(w_i \), takes input \(z_{i-1} \) and produces output \(z_i \)
- Need to compute \(\frac{\partial F}{\partial w_i} \). How?
- Key idea: recurrence
 - If we know \(\frac{\partial F}{\partial z_i} \), then chain rule gives: \(\frac{\partial F}{\partial z_i} \frac{\partial z_i}{\partial w_i} \), second term only requires each function be differentiable
 - Also \(\frac{\partial F}{\partial z_i} = \frac{\partial F}{\partial z_{i+1}} \frac{\partial z_{i+1}}{\partial z_i} \)
Learning with function compositions

Backpropagation
Backpropagation for a sequence of functions

\[z_i = f_i(z_{i-1}, w_i) \]
\[z_0 = x \]
\[z = z_n \]

\[\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{i+1}} \frac{\partial z_{i+1}}{\partial z_i} \]

\[\frac{\partial z}{\partial w_i} = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} \]
Backpropagation for a sequence of functions

\[z_i = f_i(z_{i-1}, w_i) \quad z_0 = x \quad z = z_n \]

- Assume we can compute partial derivatives of each function
 \[\frac{\partial z_i}{\partial z_{i-1}} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial z_{i-1}} \quad \frac{\partial z_i}{\partial w_i} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial w_i} \]
- Use \(g(z_i) \) to store gradient of \(z \) w.r.t \(z_i \), \(g(w_i) \) for \(w_i \)
- Calculate \(g_i \) by iterating backwards
 \[g(z_n) = \frac{\partial z}{\partial z_n} = 1 \quad g(z_{i-1}) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial z_{i-1}} = g(z_i) \frac{\partial z_i}{\partial z_{i-1}} \]
 \[g(w_i) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} = g(z_i) \frac{\partial z_i}{\partial w_i} \]
Backpropagation for a sequence of functions

• Each “function” has a “forward” and “backward” module

• Forward module for \(f_i \)
 • takes \(z_{i-1} \) and weight \(w_i \) as input
 • produces \(z_i \) as output

• Backward module for \(f_i \)
 • takes \(g(z_i) \) as input
 • produces \(g(z_{i-1}) \) and \(g(w_i) \) as output

\[
\begin{align*}
g(z_{i-1}) &= g(z_i) \frac{\partial z_i}{\partial z_{i-1}} \\
g(w_i) &= g(z_i) \frac{\partial z_i}{\partial w_i}
\end{align*}
\]
Backpropagation for a sequence of functions
Backpropagation for a sequence of functions

\[f_i \]

\[g(z_{i-1}) \]

\[g(w_i) \]

\[g(z_i) \]
Chain rule for vectors

\[
\frac{\partial a}{\partial b} = \frac{\partial a}{\partial c} \frac{\partial c}{\partial b}
\]

\[
\frac{\partial a_i}{\partial b_j} = \sum_k \frac{\partial a_i}{\partial c_k} \frac{\partial c_k}{\partial b_j}
\]

\[
\frac{\partial \mathbf{a}(i,j)}{\partial \mathbf{b}} = \frac{\partial a_i}{\partial b_j}
\]

Jacobian

\[
\frac{\partial \mathbf{a}}{\partial \mathbf{b}} = \frac{\partial \mathbf{a}}{\partial \mathbf{c}} \frac{\partial \mathbf{c}}{\partial \mathbf{b}}
\]
Loss as a function
Beyond sequences: computation graphs

- Arbitrary *graphs* of functions
- No distinction between intermediate outputs and parameters
Computation graph - Functions

• Each node implements two functions
 • A “forward”
 • Computes output given input
 • A “backward”
 • Computes derivative of z w.r.t input, given derivative of z w.r.t output
Computation graphs
Computation graphs
Computation graphs
Computation graphs
Exploring convnet architectures
Deeper is better

Challenge winner's accuracy

- 2010: 28 layers
- 2011: 25 layers
- 2012: 16 layers
- 2013: 12 layers
- 2014: 8 layers
Deeper is better

Challenge winner's accuracy

2010 2011 2012 2013 2014

Alexnet
VGG16
The VGG pattern

• Every convolution is 3x3, padded by 1
• Every convolution followed by ReLU
• ConvNet is divided into “stages”
 • Layers within a stage: no subsampling
 • Subsampling by 2 at the end of each stage
• Layers within stage have same number of channels
• Every subsampling \rightarrow double the number of channels
Challenges in training: exploding / vanishing gradients

• Vanishing / exploding gradients

\[
\frac{\partial z_i}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \ldots \frac{\partial z_{i+1}}{\partial z_i}
\]

• If each term is (much) greater than 1 \(\rightarrow\) explosion of gradients

• If each term is (much) less than 1 \(\rightarrow\) vanishing gradients
Challenges in training: dependence on init
Solutions

• Careful init

• Batch normalization

• Residual connections
Careful initialization

• Key idea: want variance to remain approx. constant
 • Variance increases in backward pass => exploding gradient
 • Variance decreases in backward pass => vanishing gradient

• “MSRA initialization”
 • weights = Gaussian with 0 mean and variance = 2/(k*k*d)
Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded

\[z_{i+1} = f_{i+1}(z_i, w_{i+1}) \]
\[\frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial f_{i+1}(z_i, w_{i+1})}{\partial z_i} \]

\[\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_{i+1}}{\partial z_i} \]
Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded

\[z_{i+1} = g_{i+1}(z_i, w_{i+1}) + z_i \]
\[\frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial g_{i+1}(z_i, w_{i+1})}{\partial z_i} + I \]

\[\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_{i+1}}{\partial z_i} \]
Residual connections

• Assumes all z_i have the same size
• True within a stage
• Across stages?
 • Doubling of feature channels
 • Subsampling
• Increase channels by 1x1 convolution
• Decrease spatial resolution by subsampling

$$z_{i+1} = g_{i+1}(z_i, w_{i+1}) + \text{subsample}(Wz_i)$$
A residual block

- Instead of single layers, have residual connections over block
Bottleneck blocks

• Problem: When channels increases, 3x3 convolutions introduce many parameters
 • $3 \times 3 \times c^2$

• Key idea: use 1x1 to project to lower dimensionality, do convolution, then come back
 • $c \times d + 3 \times 3 \times d^2 + d \times c$
The ResNet pattern

- Decrease resolution substantially in first layer
 - Reduces memory consumption due to intermediate outputs
- Divide into stages
 - maintain resolution, channels in each stage
 - halve resolution, double channels between stages
- Divide each stage into residual blocks
- At the end, compute average value of each channel to feed linear classifier
DenseNets