Transfer Learning
Transfer learning with convolutional networks
Transfer learning with convolutional networks

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Non-Convnet Method</th>
<th>Non-Convnet perf</th>
<th>Pretrained convnet + classifier</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech 101</td>
<td>MKL</td>
<td>84.3</td>
<td>87.7</td>
<td>+3.4</td>
</tr>
<tr>
<td>VOC 2007</td>
<td>SIFT+FK</td>
<td>61.7</td>
<td>79.7</td>
<td>+18</td>
</tr>
<tr>
<td>CUB 200</td>
<td>SIFT+FK</td>
<td>18.8</td>
<td>61.0</td>
<td>+42.2</td>
</tr>
<tr>
<td>Aircraft</td>
<td>SIFT+FK</td>
<td>61.0</td>
<td>45.0</td>
<td>-16</td>
</tr>
<tr>
<td>Cars</td>
<td>SIFT+FK</td>
<td>59.2</td>
<td>36.5</td>
<td>-22.7</td>
</tr>
</tbody>
</table>
Why transfer learning?

• Availability of training data

• Computational cost

• Ability to pre-compute feature vectors and use for multiple tasks

• Con: NO end-to-end learning
Finetuning
Initialize with pre-trained, then train with low learning rate
Finetuning

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Non-Convnet Method</th>
<th>Non-Convnet perf</th>
<th>Pretrained convnet + classifier</th>
<th>Finetuned convnet</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech 101</td>
<td>MKL</td>
<td>84.3</td>
<td>87.7</td>
<td>88.4</td>
<td>+4.1</td>
</tr>
<tr>
<td>VOC 2007</td>
<td>SIFT+FK</td>
<td>61.7</td>
<td>79.7</td>
<td>82.4</td>
<td>+20.7</td>
</tr>
<tr>
<td>CUB 200</td>
<td>SIFT+FK</td>
<td>18.8</td>
<td>61.0</td>
<td>70.4</td>
<td>+51.6</td>
</tr>
<tr>
<td>Aircraft</td>
<td>SIFT+FK</td>
<td>61.0</td>
<td>45.0</td>
<td>74.1</td>
<td>+13.1</td>
</tr>
<tr>
<td>Cars</td>
<td>SIFT+FK</td>
<td>59.2</td>
<td>36.5</td>
<td>79.8</td>
<td>+20.6</td>
</tr>
</tbody>
</table>
What impacts transfer accuracies?

• Relationship between pre-training and target task?

• Unclear: sometimes transfer works across very different domains
 • E.g., ImageNet -> Satellite images

• Very limited work on understanding this
What impacts transfer accuracy?

• Size of the pre-training dataset
• Size of the model
• Bigger is better

Concerns about big transfer

• Opaque datasets?
• Uncurated datasets?
• Bias in the datasets?
 • Do biased datasets affect transfer? Turns out yes.
Computational complexity
Analyzing computational complexity

• What is the computational complexity of a single convolutional layer?
 • $h \times w \times c$ input and output
 • $k \times k$ kernel

• Space:
 • Input/output: hwc
 • Filters: k^2c^2

• Time (Flops): hwk^2c^2
Reducing computational complexity

• ...while maintaining accuracy?

• Multiple ways:
 • Make architecture *a priori* cheaper
 • Make *weights* and *operations* cheaper
 • Make inference adaptive
Cheaper convolutional blocks

• **Standard convolution:**
 - Each filter operates on all channels
 - Single $k \times k$ filter operating on c channels producing one output channel: k^2c parameters, cost
 - c such filters: k^2c^2 parameters, cost

• **Depthwise separable convolution**
 - Each filter operates on a single channel
 - c filters operating on c channels: k^2c parameters, cost
 - But each channel is independently processed
 - Add a 1x1 convolution at the end with cost $c^2 : k^2c + c^2$ parameters
Cheaper convolutional blocks

• Depthwise separable convolutions are specific instance of more general idea: *grouped convolutions*

• Grouped convolutions in original AlexNet network

• Grouped convolution:
 • Divide input channels into g groups
 • Apply convolutional layers on each group independently
 • Concatenate
Grouped and depth-wise convolutions

Table 4. Depthwise Separable vs Full Convolution MobileNet

<table>
<thead>
<tr>
<th>Model</th>
<th>ImageNet</th>
<th>Million</th>
<th>Million</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv MobileNet</td>
<td>71.7%</td>
<td>4866</td>
<td>29.3</td>
</tr>
<tr>
<td>MobileNet</td>
<td>70.6%</td>
<td>569</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Other architectural changes

• Biggest memory consumption: large feature maps
Other architectural changes

• Biggest memory consumption: large feature maps

• Simple solution: reduce resolution early
Other architectural changes

- Biggest memory consumption: large feature maps
- Simple solution (ResNet):
 - Reduce resolution drastically (/4) early
- More sophisticated changes: Inverted residuals (MobileNet v2)

Other kinds of connections

- **DenseNets**
 - Replace addition of residuals with concatenation
 - Alternative to solving vanishing gradient problem
 - Should *increase* number of parameters, but *decreases* them
 - Better re-use of features

Figure 1: A 5-layer dense block with a growth rate of $k = 4$. Each layer takes all preceding feature-maps as input.
Adaptive inference

• Some examples are harder than others
• Should be able to use different amounts of computation for different examples
• Version 1: skip some residuals

Adaptive inference

• Some examples are harder than others
• Should be able to use different amounts of computation for different examples
• Version 1: skip some residuals

Adaptive inference

• Some examples are harder than others
• Should be able to use different amounts of computation for different examples
• Version 2: reduce resolution at different rates

Huang, Gao, et al. "Multi-scale dense networks for resource efficient image classification." ICLR 2018
Compressing model weights

• All of model storage: filters
• Flops also scale with non-zero entries in filters (in principle)
• Compress filters
 • Sparsify them
 • Represent them with fewer bits
Pruning network connections

• Simple approach: prune weights that are below a threshold
• Retrain rest of the weights
• Repeat

Filter quantization

• Two questions:
 • How do we quantize?
 • Quantization → discrete values. How do we optimize?

• Example 1: cluster
 • Weights → indices into dictionary
 • Update dictionary elements as parameters.

Filter quantization

• Two questions:
 • How do we quantize?
 • Quantization \(\rightarrow\) discrete values. How do we optimize?

• Example 2: \textit{binarize/ternarize}
 • Weights \(\rightarrow\) binary/ternary, + real-valued scale
 • Parameter updates happen in real space

Beyond ConvNets
Attention (Transformers)

- Comes from the NLP community
- Originally an approach for language generation
- Motivation: need to attend to different parts of the sentence for, e.g., translation

He went to the river

वह नदी के पास गया
Attention (Transformers)

• Comes from the NLP community
• Is an approach for processing sets

Attention (Transformers)

• Comes from the NLP community
• Is an approach for processing sets

Queries

Keys

Values

Queries
Attention (Transformers)

• Comes from the NLP community
• Is an approach for processing sets
Attention (Transformers)

Input

Queries

Keys

Values

Output

Attention
Attention (Transformers)

Transformers in computer vision

• An evolving frontier
 • First key results only late last year

• Preliminary conclusions
 • Transformers can outperform convnets, but require much stronger data augmentation
 • Transformers seem to transfer better.