Image classification
Image classification

• Given an image, produce a label
• Label can be:
 • 0/1 or yes/no: *Binary classification*
 • one-of-k: *Multiclass classification*
 • 0/1 for each of k concepts: *Multilabel classification*
MNIST

- 2D
- 10 classes
- 6000 examples per class
Caltech 101

- 101 classes
- 10 classes
- 30 examples per class
- Strong category-specific biases
- Clean images

MNIST

1990’s

2004
PASCAL VOC

- 20 classes
- ~500 examples per class
- Clutter, occlusion, natural scenes

MNIST 1990’s
Caltech 101 2004
2007-2012
ImageNet

- 1000 classes
- ~1000 examples per class
- Mix of cluttered and clean images
Why is recognition hard?

- Pose/articulation
- Scale
- Clutter/occlusion
- Lighting
Learning

• Key idea: teach computer visual concepts by providing examples

\[S = \{(x_i, y_i) \sim \mathcal{D}, i = 1, \ldots, n\} \]
Example

• Binary classifier “Dog” or “not Dog”
• Labels: \{0, 1\}
• Training set

\{(\text{Dog image}), 1), (\text{Dog image}), 1), (\text{Bird image}), 0) , ... \}
Learning

- Key idea: teach computer visual concepts by *providing examples*

\[S = \{(x_i, y_i) \sim D, i = 1, \ldots, n\} \]

- Want to be able to estimate label \(y \) for *new images* \(x \)
 - Want to give score \(s(y, x) \) for each possible label \(y \), then pick highest scoring
 - Want to estimate \(y(x) \)
 - Want to estimate \(P(y|x) \), then pick most likely
Choosing a model class

• Will estimate a probability $P(y \mid x)$

• Any function that takes x as input and outputs probability distribution
 • $h : \mathcal{X} \rightarrow \mathcal{C}^{\mid \mathcal{Y} \mid}$ where \mathcal{C}^d is a probability distribution over d classes
 • Very large set of possibilities for h

• Constrain choice: Choose a family of possible functions H
 • Hypothesis class
Hypothesis class I: Classical models

• Choose h to be a linear classifier over some feature space

• First extract features: $z = \phi(x)$
 • ϕ is a fixed, hand-crafted function that converts images into features useful for recognition: $\phi: \mathcal{X} \to \mathbb{R}^d$

• Next multiply by a weight matrix to produce class scores: $s = Wz$
 • W is unknown a priori

• Next normalize scores to a probability
 • $P(y = k | x) \propto e^{s_k}$
 • “Softmax”
Hypothesis class I: Classical models

- \(h(x; W) = \text{softmax}(W \phi(x)) \)
- For different settings of \(W \), get different hypotheses
- Hypothesis class \(H = \{ h(\cdot; W); W \in \mathbb{R}^{|Y| \times d} \} \)
- \(W \) are parameters: index hypotheses in hypothesis class
Choice of feature extractor?

- SIFT, HOG, GIST, BOW....
- The rest of the pipeline is very simple: linear function + softmax
- So heavy lifting must be done by feature extractor
- But how do we design feature extractor?
SIFT

- SIFT itself a series of simple, fixed steps
- Make some of them parametric?
Hypothesis class 2: Multilayer perceptrons

• Key idea: build complex functions by composing *many* simple functions
General recipe

• Fix hypothesis class
 • \(h_w(x) = \text{softmax} \left(f_3 \left(f_2 \left(g \left(f_1(x, w_1) \right), w_2 \right), w_3 \right) \right) \)
 • \(h_w(x) = \text{softmax} \left(W \phi(x) \right) \)

• Define loss function
 • \(L(h_w(x_i), y_i) = -\log p_{y_i}(x_i) \)

• Minimize average (or total) loss on the training set
 \[
 \min_w \frac{1}{n} \sum_{i=1}^{n} L(h_w(x_i), y_i)
 \]

• How do we minimize?
• Why should this work?
Training: Choosing the best hypothesis

• Need to minimize an objective function.
• In general, optimization problem.
• If L is differentiable and h is differentiable: can do gradient descent

$$\min_w \frac{1}{n} \sum_{i=1}^{n} L(h_w(x_i), y_i)$$
Training = Optimization

• Simple solution: \textit{gradient descent}

\[
\min_w f(w)
\]

\[
w^{(t+1)} = w^{(t)} - \alpha \nabla_w f(w^{(t)})
\]
Stochastic gradient descent

\[f(w) = \frac{1}{n} \sum_i L(h_w(x_i), y_i) \]

\[\nabla_w f(w) = \frac{1}{n} \sum_i \nabla_w L(h_w(x_i), y_i) \]

Objective function

Gradient

Gradient = average of per example gradients

\[\nabla_w f(w) \approx \nabla_w L(h_w(x_i), y_i) \]

Stochastic gradient descent using single examples

\[\nabla_w f(w) \approx \frac{1}{|B|} \sum_{k=1}^{\left|B\right|} \nabla_w L(h_w(x_{i_k}), y_{i_k}) \]

Stochastic gradient descent using minibatch
Stochastic gradient descent

- Randomly sample small subset of examples
- Compute gradient on small subset
 - *Unbiased estimate of true gradient*
- Take step along estimated gradient
Computing derivatives

\[\nabla_w f(w) \approx \nabla_w L(h_w(x_i), y_i) \]

- How do we compute gradient?
- Composition of functions: use chain rule

\[
\begin{align*}
 z_1 &= f_1(x, w_1) & g_1 &= \frac{\partial l}{\partial z_1} = g_2 \frac{\partial z_2}{\partial z_1} \\
 z_2 &= f_2(z_1, w_2) & g_2 &= \frac{\partial l}{\partial z_2} = g_3 \frac{\partial z_3}{\partial z_2} \\
 z_3 &= f_3(z_2, w_3) & g_3 &= \frac{\partial l}{\partial z_3} \\
 l &= L(z_3, y) & \frac{\partial l}{\partial w_1} &= g_1 \frac{\partial z_1}{\partial w_1} \\
 & & \frac{\partial l}{\partial w_2} &= g_2 \frac{\partial z_2}{\partial w_2} \\
 & & \frac{\partial l}{\partial w_3} &= g_3 \frac{\partial z_3}{\partial w_3}
\end{align*}
\]
The gradient of convnets

Backpropagation
Risk

• Given:
 • Distribution \mathcal{D}
 • A hypothesis $h \in H$
 • Loss function L

• We are interested in Expected Risk:

$$R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(h(x), y)$$

• Given training set S, and a particular hypothesis h, Empirical Risk:

$$\hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y)$$
Risk

\[R(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} L(h(x), y) \quad \hat{R}(S, h) = \frac{1}{|S|} \sum_{(x, y) \in S} L(h(x), y) \]

- By central limit theorem,
 \[\mathbb{E}_{S \sim \mathcal{D}^n} \hat{R}(S, h) = R(h) \]

- Variance proportional to 1/n

- For randomly chosen \(h \), empirical risk is an unbiased estimator of expected risk
Risk

• Empirical risk unbiased estimate of expected risk
• Want to minimize expected risk
• Idea: Minimize empirical risk instead
• This is the **Empirical Risk Minimization Principle**

\[
R(h) = \mathbb{E}_{(x,y) \sim D} L(h(x), y) \quad \hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y)
\]

\[
h^* = \arg \min_{h \in H} \hat{R}(S, h)
\]
Generalization

\[R(h) = \mathbb{E}_{(x,y) \sim D} L(h(x), y) \]

\[\hat{R}(S, h) = \frac{1}{|S|} \sum_{(x,y) \in S} L(h(x), y) \]

\[R(h) = \hat{R}(S, h) + (R(h) - \hat{R}(S, h)) \]

Training error

Generalization error
Overfitting

- We are minimizing training error
- Empirical risk of chosen hypothesis *no longer* unbiased estimate:
 - We chose hypothesis based on S
 - Might have chosen h for which S is a special case
- Overfitting:
 - Minimize training error, but generalization error *increases*
Controlling generalization error

• Variance of empirical risk inversely proportional to size of S
 • Choose very large S!

• Larger the hypothesis class H, Higher the chance of hitting bad hypotheses with low training error and high generalization error
 • Choose small H!

• For many models, can bound generalization error using some property of parameters
 • Regularize during optimization!
 • Eg. L2 regularization
Controlling generalization error

• How do we know we are overfitting?
 • Use a *held-out* “validation set”
 • To be an unbiased sample, must be completely *unseen*
Putting it all together

• Want model with least expected risk = expected loss
• But expected risk hard to evaluate
• Empirical Risk Minimization: minimize empirical risk in training set
• Might end up picking special case: overfitting
• Avoid overfitting by:
 • Constructing large training sets
 • Reducing size of model class
 • Regularization
Putting it all together

• Collect training set and validation set
• Pick hypothesis class
• Pick loss function
• Minimize empirical risk (+ regularization)
• Measure performance on held-out validation set
• Profit!
Loss functions and hypothesis classes

<table>
<thead>
<tr>
<th>Loss function</th>
<th>Problem</th>
<th>Range of h</th>
<th>\mathcal{Y}</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log loss</td>
<td>Binary Classification</td>
<td>\mathbb{R}</td>
<td>${0, 1}$</td>
<td>$\log(1 + e^{-yh(x)})$</td>
</tr>
<tr>
<td>Negative log likelihood</td>
<td>Multiclass classification</td>
<td>$[0, 1]^k$</td>
<td>${1, \ldots, k}$</td>
<td>$- \log h_y(x)$</td>
</tr>
<tr>
<td>Hinge loss</td>
<td>Binary Classification</td>
<td>\mathbb{R}</td>
<td>${0, 1}$</td>
<td>$\max(0, 1 - yh(x))$</td>
</tr>
<tr>
<td>MSE</td>
<td>Regression</td>
<td>\mathbb{R}</td>
<td>\mathbb{R}</td>
<td>$(y - h(x))^2$</td>
</tr>
</tbody>
</table>
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions

\[f(x) = Wx \]

\[g(x) = \text{max}(x,0) \]

\[f(x) = Wx \]

\[g(x) = \text{max}(x,0) \]

\[f(x) = Wx \]
Multilayer perceptrons

• Key idea: build complex functions by composing simple functions
• Caveat: simple functions must include non-linearities
• $W(U(Vx)) = (WUV)x$
Reducing capacity
Reducing capacity
Idea 1: local connectivity

• Inputs and outputs are *feature maps*
• Pixels only related to nearby pixels
Idea 2: Translation invariance

- Pixels only related to nearby pixels
Local connectivity + translation invariance = \textit{convolution}

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Local connectivity + translation invariance = convolution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>0.1</td>
<td>3.6</td>
</tr>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Local connectivity + translation invariance = convolution

<table>
<thead>
<tr>
<th>5.4</th>
<th>0.1</th>
<th>3.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>2.3</td>
<td>4.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>
Convolution as a primitive

Convolution
Invariance to distortions
Invariance to distortions

Image gradients → Keypoint descriptor
Invariance to distortions: Pooling
Invariance to distortions: Subsampling
Convolution subsampling convolution
Convolution subsampling convolution

• Convolution in earlier steps detects more local patterns less resilient to distortion
• Convolution in later steps detects more global patterns more resilient to distortion
• Subsampling allows capture of larger, more invariant patterns