Graphical models for refinement
Last time: structured prediction

• Output space is *large* and *structured*
 • Large: cannot be enumerated
 • Structured: some outputs are *a priori* more likely than others

• Basic idea:
 • Define probabilistic model $P(y|x)$
 • Use domain knowledge of what prior should be
 • Estimate the most likely label at test time
 • $y^* = \arg \max P(y|x)$
Defining probabilistic model for segmentation

\[P(y|x) = \frac{1}{Z} e^{-E(y,x)} \]

\[y^* = \arg \max_y P(y|x) \]

\[= \arg \min_y E(y, x) \]

\[E(y, x) = \sum_i \phi_{data}^i (y_i, x) + \sum_{i,j \in \mathcal{N}} \phi_{smooth}^{ij} (y_i, y_j, x) \]
Example data terms

\[E(y, x) = \sum_{i} \phi_{i}^{data}(y_{i}, x) + \sum_{i, j \in \mathcal{N}} \phi_{ij}^{smooth}(y_{i}, y_{j}, x) \]

• What should \(\phi_{i}^{data} \) be?
• Also called *unary terms*
• Given an image \(x \) and a candidate label \(y_{i} \) for pixel \(i \), score it
• Can be any classifier operating on individual pixels
• Can also be class scores output by a semantic segmentation network
Example smoothness terms

\[E(y, x) = \sum_i \phi_i^{data}(y_i, x) + \sum_{i,j \in N} \phi_{ij}^{smooth}(y_i, y_j, x) \]

• What should \(\phi_{ij}^{smooth} \) be?

• Also called *binary terms*

• Given an image \(x \) and a candidate label \(y_i \) for pixel \(i \) and candidate label \(y_j \) for pixel \(j \), score it

 • Example 1: 0 if \(y_i = y_j \), 1 otherwise

 • Example 2: 0 if \(y_i = y_j \), \(w_{ij}(x) \) otherwise, where \(w_{ij}(x) \) captures color similarity between \(i \) and \(j \)

 • Example 3: can be the output of a neural network.
Example graph structure

\[E(y, x) = \sum_i \phi_{data}^i(y_i, x) + \sum_{i, j \in \mathcal{N}} \phi_{smooth}^{ij}(y_i, y_j, x) \]

• What should \(\mathcal{N} \) be?
• Which pixels should we connect?
• Neighboring pixels?
 • Will only ensure local smoothness: cannot handle e.g., occlusion
• All pixels?
• Pixels within a neighborhood?
MAP estimation

\[
E(y, x) = \sum_i \phi_i^{data}(y_i, x) + \sum_{i,j \in N} \phi_i^{smooth}(y_i, y_j, x)
\]

\[
P(y|x) = \frac{1}{Z} e^{-E(y,x)}
\]

\[
= \prod_i \psi_i^{data}(y_i, x) \prod_{i,j \in N} \psi_i^{smooth}(y_i, y_j, x)
\]

\[
y^* = \arg \max_y P(y|x)
\]

\[
= \arg \min_y E(y, x)
\]

- When is this arg min solvable? When is it not?
- If not solvable, can we make approximations?
When is MAP estimation tractable?

- Consider a tree
- MAP problem:

$$\arg\max_{y_1, y_2, y_3, y_4} \psi_1(y_1)\psi_2(y_2)\psi_3(y_3)\psi_{12}(y_1, y_2)\psi_{23}(y_2, y_3)$$

- Let’s see how we might get the value of y_1^*
When is MAP estimation tractable?

• Consider a tree

• Rearranging:

$$\max_{y_1, y_2, y_3, y_4} \psi_1(y_1)\psi_{12}(y_1, y_2)\psi_2(y_2)\psi_{23}(y_2, y_3)\psi_3(y_3)$$
When is MAP estimation tractable?

• Consider a tree
• Push max in:

\[
\begin{align*}
\max_{y_1} \psi_1(y_1) & \left(\max_{y_2} \psi_{12}(y_1, y_2) \psi_2(y_2) \left(\max_{y_3} \psi_{23}(y_2, y_3) \psi_3(y_3) \right) \right) \\
= \max_{y_1} \psi_1(y_1) & \left(\max_{y_2} \psi_{12}(y_1, y_2) \psi_2(y_2) m_{2\leftarrow 3}(y_2) \right) \\
= \max_{y_1} \psi_1(y_1) & m_{1\leftarrow 2}(y_1)
\end{align*}
\]

Get \(y_1^* \) from here!
Message passing / Belief propagation

• $m_{2\leftarrow 3}(y_2)$ and $m_{1\leftarrow 2}(y_1)$ are messages from 3 to 2 and 2 to 1 respectively

• $m_{i\leftarrow j}(y_i)$ captures what node j and other previous nodes think the label of i should be

• Final label for i: integrate message with unary potential on i

• How to get labels for other nodes?
 • Repeat, with memoization
Message passing/belief propagation

• General algorithm: belief propagation
• Each node starts with a belief $b_i(\cdot)$ about what its label should be
• Nodes send messages $m_{i\leftarrow j}(\cdot)$ to other nodes
• Beliefs get updated based on messages
Message passing / belief propagation

- Initialization
 \[b_i(y_i) = \psi_i(y_i) \]
 \[m_{i\leftarrow j}(y_i) = 1 \]

- Repeat:
 \[b_i(y_i) = \psi_i(y_i) \prod_{j \in \mathcal{N}(i)} m_{i\leftarrow j}(y_i) \]
 \[m_{i\leftarrow j}(y_i) = \max_{y_j} \psi_j(y_j) \prod_{k \in \mathcal{N}(j), k \neq i} m_{k\leftarrow j}(y_j) \]
When is MAP estimation tractable?

• When graph is a tree
 • Designate one node as root
 • Send messages from leaves inward
 • Send messages from root outward
 • Done!

• When graph is not tree, belief propagation not guaranteed to converge and not guaranteed to be correct
Images

• Usually grid structure: not tractable
• Sometimes fully connected graphs
• Smoothness potential depends on labels and color and position difference between pixels

$$\phi_{ij}^{smooth}(y_i, y_j, x) = \mu(y_i, y_j)w_{ij}(x)$$
Inference in CRFs

• In general NP-hard
• Variational methods: Approximate complex distribution $p(y|x)$ with simple distribution $q(y)$
• Mean-field approximation: $q(y)$ is independent distribution for each pixel:

$$q(y) = \prod_i q_i(y_i)$$
• If N pixels and K classes, basically N K-dimensional vectors
Mean field inference

• If we can find best q_i, can then independently optimize each q_i

• Try to match p with q by minimizing *Kulback-Leibler Divergence*

\[
KL(q||p) = \sum_y q(y) \log p(y) - \sum_y q(y) \log q(y)
\]

• Iterative process: in each iteration, do coordinate ascent on one $q_i(\cdot)$
Mean field inference

• Coordinate descent on $q_i(\cdot)$
• At each step, keep other pixels fixed and update one
• Each step (approximately):
 • Take current $q_j(\cdot)$ on all $j \neq i$
 • Use this to compute $p(y_i | y_{-i})$ where $y_{-i} = \{y_j : j \neq i\}$
 • Easy: only depends on pixels i is connected to
 • Set q_i to this

$$q_i \propto \mathbb{E}_{q_{-i}} [\log p(y_i | y_{-i})]$$
Fully Connected CRFs

- Typically, only adjacent pixels connected
 - Fewer connections => Easier to optimize
- Dense connectivity: every pixel connected to everything else
- Intractable to optimize except if pairwise potential takes specific form

$$\phi_{ij}^{smooth}(y_i, y_j, x) = \mu(y_i, y_j)w_{ij}(x)$$

$$w_{ij}(x) = \sum_m w_me^{-\|f_m(i) - f_m(j)\|^2}$$

Gaussian edge potentials

\[w_{ij}(x) = \sum_m w_m e^{-\|f_m(i) - f_m(j)\|^2} \]

• What should \(f \) be?
• simple answer: color, position
Mean field inference for Dense-CRF

\[q_i(y_i = l) \propto \exp[-\psi_U(y_i)] - \sum_{l'} \mu(l, l') \sum_m w_m \sum_{j \neq i} e^{-\|f_m(i) - f_m(j)\|^2} \cdot q_j(y_j = l') \]

Unary

Label compatibility transform

Message passing

\[q_i \propto \exp[-\psi_{U}^{(i)}] - \mu \sum_j m_{j \rightarrow i} \]
Fully Connected CRFs
Mean field inference as a recurrent network

Figure 1. A mean-field iteration as a CNN. A single iteration of the mean-field algorithm can be modelled as a stack of common CNN layers.

Inference as iterated refinement

• Mean field inference and belief propagation are iterative processes
 • In each iteration, update pixel beliefs based on current estimates of neighbors
• In general *approximate* and *may not converge*
• We created ideal probability distribution, then constructed approximate inference scheme
• Can we directly design iterated inference scheme?
Autocontext-like techniques

• Key idea: directly train iterative refinement scheme.
• Initial prediction based just on unaries (for example)
• i-th classifier takes as input image and output of (i-1)-th classifier and makes prediction
• Allows each classifier to use full context from previous prediction
What if i-th classifier overfits?

• *Domain shift* for the next classifier

• Idea: train each classifier on a separate set of inputs
 • Split dataset into 2 folds
 • Train separate classifiers on each fold
 • Use predictions on held-out set to train subsequent predictions
Shared vs separate classifiers

• Using separate classifiers at each step adds parameters
• Can we train a single refinement module?
• *Inference machines*
Autocontext and Inference Machines

- Shared parameters: *Inference Machines*
- Unshared parameters: *Autocontext*