Neural network training
Vagaries of optimization

• Non-convex
 • Local optima
 • Sensitivity to initialization

• Vanishing / exploding gradients

\[
\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_{i+1}}{\partial z_i}
\]

• If each term is (much) greater than 1 \(\rightarrow\) explosion of gradients
• If each term is (much) less than 1 \(\rightarrow\) vanishing gradients
Vanishing and exploding gradients

\[
\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \ldots \frac{\partial z_{i+1}}{\partial z_i}
\]

\[
\frac{\partial L}{\partial z_i} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial z_i}
\]

\[
\lambda_{\text{min}}\left(\frac{\partial z}{\partial z_i}\right) \frac{\partial L}{\partial z} \leq \frac{\partial L}{\partial z} \frac{\partial z}{\partial z_i} \leq \lambda_{\text{max}}\left(\frac{\partial z}{\partial z_i}\right) \frac{\partial L}{\partial z}
\]

\[
\lambda_{\text{max}}(UV) \leq \lambda_{\text{max}}(U)\lambda_{\text{max}}(V)
\]

\[
\lambda_{\text{min}}(UV) \geq \lambda_{\text{min}}(U)\lambda_{\text{min}}(V)
\]

\[
\lambda_{\text{max}}(A^n) = \lambda_{\text{max}}(A)^n
\]

\[
\lambda_{\text{min}}(A^n) = \lambda_{\text{min}}(A)^n
\]
Sigmoids cause vanishing gradients
Convolution subsampling convolution

- Convolution
- Subsampling
- Convolution
Rectified Linear Unit (ReLU)

• \(\text{max} (x,0) \)
• Also called half-wave rectification (signal processing)
Image Classification
How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss
How to do machine learning

• Create training / validation sets
• Identify loss functions
• Choose hypothesis class
• Find best hypothesis by minimizing training loss

$h(x) = s$

$\hat{p}(y = k|x) \propto e^{s_k}$

$\hat{p}(y = k|x) = \frac{e^{s_k}}{\sum_j e^{s_j}}$

$L(h(x), y) = -\log \hat{p}(y|x)$
MNIST Classification

<table>
<thead>
<tr>
<th>Method</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear classifier over pixels</td>
<td>12</td>
</tr>
</tbody>
</table>
ImageNet

• 1000 categories
• ~1000 instances per category

ImageNet

• Top-5 error: algorithm makes 5 predictions, true label must be in top 5
• Useful for incomplete labelings
Challenge winner's accuracy

- 2010: Convolutional Networks
- 2011: Convolutional Networks
- 2012: Convolutional Networks
Why do convnets work?

• Claim: ConvNets have way more parameters than traditional models
 • Wrong: contemporary models had same or more parameters

• Claim: Deep models are more expressive than shallow models
 • Wrong: 3 layer neural networks are *universal function approximators*

• What does depth provide?
 • More non-linearities: many ways of expressing non-linear functions
 • More module reuse: really long switch-case vs functions
 • More parameter sharing: most computation is shared amongst categories
Visualizing convolutional networks I

Visualizing convolutional networks II

- Image pixels important for classification = pixels when blocked cause misclassification

Convolutional Networks and the Brain
Transfer learning
Transfer learning with convolutional networks

Trained feature extractor ϕ
Transfer learning with convolutional networks

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Non-Convnet Method</th>
<th>Non-Convnet perf</th>
<th>Pretrained convnet + classifier</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech 101</td>
<td>MKL</td>
<td>84.3</td>
<td>87.7</td>
<td>+3.4</td>
</tr>
<tr>
<td>VOC 2007</td>
<td>SIFT+FK</td>
<td>61.7</td>
<td>79.7</td>
<td>+18</td>
</tr>
<tr>
<td>CUB 200</td>
<td>SIFT+FK</td>
<td>18.8</td>
<td>61.0</td>
<td>+42.2</td>
</tr>
<tr>
<td>Aircraft</td>
<td>SIFT+FK</td>
<td>61.0</td>
<td>45.0</td>
<td>-16</td>
</tr>
<tr>
<td>Cars</td>
<td>SIFT+FK</td>
<td>59.2</td>
<td>36.5</td>
<td>-22.7</td>
</tr>
</tbody>
</table>
Why transfer learning?

• Availability of training data

• Computational cost

• Ability to pre-compute feature vectors and use for multiple tasks

• Con: NO end-to-end learning
Finetuning
Finetuning

Initialize with pre-trained, then train with low learning rate
Finetuning

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Non-Convnet Method</th>
<th>Non-Convnet perf</th>
<th>Pretrained convnet + classifier</th>
<th>Finetuned convnet</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltech 101</td>
<td>MKL</td>
<td>84.3</td>
<td>87.7</td>
<td>88.4</td>
<td>+4.1</td>
</tr>
<tr>
<td>VOC 2007</td>
<td>SIFT+FK</td>
<td>61.7</td>
<td>79.7</td>
<td>82.4</td>
<td>+20.7</td>
</tr>
<tr>
<td>CUB 200</td>
<td>SIFT+FK</td>
<td>18.8</td>
<td>61.0</td>
<td>70.4</td>
<td>+51.6</td>
</tr>
<tr>
<td>Aircraft</td>
<td>SIFT+FK</td>
<td>61.0</td>
<td>45.0</td>
<td>74.1</td>
<td>+13.1</td>
</tr>
<tr>
<td>Cars</td>
<td>SIFT+FK</td>
<td>59.2</td>
<td>36.5</td>
<td>79.8</td>
<td>+20.6</td>
</tr>
</tbody>
</table>
Exploring convnet architectures
Deeper is better
Deeper is better

Challenge winner's accuracy

- 2010: Alexnet
- 2011: Alexnet
- 2012: Alexnet
- 2013: VGG16
- 2014: VGG16
The VGG pattern

• Every convolution is 3x3, padded by 1
• Every convolution followed by ReLU
• ConvNet is divided into “stages”
 • Layers within a stage: no subsampling
 • Subsampling by 2 at the end of each stage
• Layers within stage have same number of channels
• Every subsampling \rightarrow double the number of channels
Challenges in training: exploding / vanishing gradients

- Vanishing / exploding gradients

\[
\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \ldots \frac{\partial z_{i+1}}{\partial z_i}
\]

- If each term is (much) greater than 1 \(\rightarrow\) explosion of gradients
- If each term is (much) less than 1 \(\rightarrow\) vanishing gradients
Challenges in training: dependence on init
Solutions

• Careful init

• Batch normalization

• Residual connections
Careful initialization

- Key idea: want variance to remain approx. constant
 - Variance increases in backward pass => exploding gradient
 - Variance decreases in backward pass => vanishing gradient
- “MSRA initialization”
 - weights = Gaussian with 0 mean and variance = $2/(k\times k \times d)$
Batch normalization

• Key idea: normalize so that each layer output has zero mean and unit variance
 • Compute mean and variance for each channel
 • Aggregate over batch
 • Subtract mean, divide by std

• Need to reconcile train and test
 • No “batches” during test
 • After training, compute means and variances on train set and store

Residual connections

• In general, gradients tend to vanish
• Key idea: allow gradients to flow unimpeded

\[
\begin{align*}
 z_{i+1} &= f_{i+1}(z_i, w_{i+1}) \\
 \frac{\partial z_{i+1}}{\partial z_i} &= \frac{\partial f_{i+1}(z_i, w_{i+1})}{\partial z_i} \\
 \frac{\partial z}{\partial z_i} &= \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_{i+1}}{\partial z_i}
\end{align*}
\]
Residual connections

- In general, gradients tend to vanish
- Key idea: allow gradients to flow unimpeded

\[z_{i+1} = g_{i+1}(z_i, w_{i+1}) + z_i \]

\[\frac{\partial z_{i+1}}{\partial z_i} = \frac{\partial g_{i+1}(z_i, w_{i+1})}{\partial z_i} + I \]

\[\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{n-1}} \frac{\partial z_{n-1}}{\partial z_{n-2}} \cdots \frac{\partial z_{i+1}}{\partial z_i} \]
Residual connections

• Assumes all z_i have the same size
• True within a stage
• Across stages?
 • Doubling of feature channels
 • Subsampling
• Increase channels by 1x1 convolution
• Decrease spatial resolution by subsampling

$$z_{i+1} = g_{i+1}(z_i, w_{i+1}) + \text{subsample}(Wz_i)$$
A residual block

• Instead of single layers, have residual connections over block
Bottleneck blocks

• Problem: When channels increases, 3x3 convolutions introduce many parameters
 • $3 \times 3 \times c^2$

• Key idea: use 1x1 to project to lower dimensionality, do convolution, then come back
 • $c \times d + 3 \times 3 \times d^2 + d \times c$
The ResNet pattern

• Decrease resolution substantially in first layer
 • Reduces memory consumption due to intermediate outputs

• Divide into stages
 • maintain resolution, channels in each stage
 • halve resolution, double channels between stages

• Divide each stage into residual blocks

• At the end, compute average value of each channel to feed linear classifier
Putting it all together - Residual networks

Challenge winner's accuracy

- 2010
- 2011
- 2012
- 2013
- 2014
- 2015
Semantic Segmentation
The Task
Evaluation metric

• Pixel classification!
• Accuracy?
 • Heavily unbalanced
• Intersection over Union
 • Average across classes and images
• Per-class accuracy
 • Average across classes and images
Things vs Stuff

THINGS
- Person, cat, horse, etc
- Constrained shape
- Individual instances with separate identity
- May need to look at objects

STUFF
- Road, grass, sky etc
- Amorphous, no shape
- No notion of instances
- Can be done at pixel level
- “texture”
Challenges in data collection

• Precise localization is hard to annotate

• Annotating every pixel leads to heavy tails

• Common solution: annotate few classes (often things), mark rest as “Other”

• Common datasets: PASCAL VOC 2012 (~1500 images, 20 categories), COCO (~100k images, 20 categories)
Pre-convnet semantic segmentation

• Things
 • Do object detection, then segment out detected objects

• Stuff
 • ”Texture classification”
 • Compute histograms of filter responses
 • Classify local image patches
Semantic segmentation using convolutional networks

Convolve with \#classes 1x1 filters

\(\frac{w}{4} \) \hspace{1cm} \(\frac{h}{4} \)
Semantic segmentation using convolutional networks

• Pass image through convolution and subsampling layers
• Final convolution with #classes outputs
• Get scores for \textit{subsampled} image
• Upsample back to original size
Semantic segmentation using convolutional networks
The resolution issue

• Problem: Need fine details!
• Shallower network / earlier layers?
 • Not very semantic!
• Remove subsampling?
 • Looks at only a small window!
Solution 1: Image pyramids

Solution 2: Skip connections
Solution 2: Skip connections
Skip connections

Skip connections

- Problem: early layers not semantic