Convolutional networks
Convolution as a primitive

Convolution

\[c \quad \rightarrow \quad c' \]

\[w \quad h \quad c \quad \rightarrow \quad w \quad h \quad c' \]
Convolution subsampling convolution

conv + non-linearity

subsample

conv + non-linearity
Convolutional networks

Parameters
Empirical Risk Minimization

\[
\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} L(h(x_i; \theta), y_i)
\]

Convolutional network

\[
\theta^{(t+1)} = \theta^{(t)} - \lambda \frac{1}{N} \sum_{i=1}^{N} \nabla L(h(x_i; \theta), y_i)
\]

Gradient descent update
Computing the gradient of the loss

\[\nabla L(h(x; \theta), y) \]

\[z = h(x; \theta) \]

\[\nabla_{\theta} L(z, y) = \frac{\partial L(z, y)}{\partial z} \frac{\partial z}{\partial \theta} \]
Convolutional networks
The gradient of convnets

\[x \overset{f_1}{\rightarrow} z \overset{f_2}{\rightarrow} z \overset{f_3}{\rightarrow} z \overset{f_4}{\rightarrow} z \overset{f_5}{\rightarrow} z = z \]
The gradient of convnets

\[
\frac{\partial z}{\partial w_5}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4}
\]
The gradient of convnets

\[\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} \]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} = \frac{\partial f_5(z_4, w_5)}{\partial z_4} \frac{\partial f_4(z_3, w_4)}{\partial w_4}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} = \frac{\partial f_5(z_4, w_5)}{\partial z_4} \frac{\partial f_4(z_3, w_4)}{\partial w_4}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_4} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial w_4} = \frac{\partial f_5(z_4, w_5)}{\partial z_4} \frac{\partial f_4(z_3, w_4)}{\partial w_4}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_3}
\]
The gradient of convnets

\[
\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3} \]

The gradient of convnets

\[
\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3}
\]
The gradient of convnets

\[\frac{\partial z}{\partial w_3} = \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3} \]

\[\frac{\partial z}{\partial z_3} = \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial z_3} \]
The gradient of convnets

\[
\begin{align*}
\frac{\partial z}{\partial z_3} &= \frac{\partial z}{\partial z_4} \frac{\partial z_4}{\partial z_3} \\
\frac{\partial z}{\partial w_3} &= \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial w_3}
\end{align*}
\]
The gradient of convnets

\[
\begin{align*}
\frac{\partial z}{\partial z_2} &= \frac{\partial z}{\partial z_3} \frac{\partial z_3}{\partial z_2} \\
\frac{\partial z}{\partial w_2} &= \frac{\partial z}{\partial z_2} \frac{\partial z_2}{\partial w_2}
\end{align*}
\]

Recurrence going backward!!
The gradient of convnets

Backpropagation
Backpropagation for a sequence of functions

\[z_i = f_i(z_{i-1}, w_i) \]
\[z_0 = x \]
\[z = z_n \]

\[\frac{\partial z}{\partial z_i} = \frac{\partial z}{\partial z_{i+1}} \frac{\partial z_{i+1}}{\partial z_i} \]

\[\frac{\partial z}{\partial w_i} = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} \]
Backpropagation for a sequence of functions

\[z_i = f_i(z_{i-1}, w_i) \quad z_0 = x \quad z = z_n \]

- Assume we can compute partial derivatives of each function
 \[\frac{\partial z_i}{\partial z_{i-1}} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial z_{i-1}} \quad \frac{\partial z_i}{\partial w_i} = \frac{\partial f_i(z_{i-1}, w_i)}{\partial w_i} \]
- Use \(g(z_i) \) to store gradient of \(z \) w.r.t \(z_i \), \(g(w_i) \) for \(w_i \)
- Calculate \(g(z_i) \) by iterating backwards
 \[g(z_n) = \frac{\partial z}{\partial z_n} = 1 \quad g(z_{i-1}) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial z_{i-1}} = g(z_i) \frac{\partial z_i}{\partial z_{i-1}} \]
- Use \(g(z_i) \) to compute gradient of parameters \(g(w_i) \)
 \[g(w_i) = \frac{\partial z}{\partial z_i} \frac{\partial z_i}{\partial w_i} = g(z_i) \frac{\partial z_i}{\partial w_i} \]
Backpropagation for a sequence of functions

• Each “function” has a “forward” and “backward” module

• Forward module for f_i
 • takes z_{i-1} and weight w_i as input
 • produces z_i as output

• Backward module for f_i
 • takes $g(z_i)$ as input
 • produces $g(z_{i-1})$ and $g(w_i)$ as output

\[
g(z_{i-1}) = g(z_i) \frac{\partial z_i}{\partial z_{i-1}} \quad g(w_i) = g(z_i) \frac{\partial z_i}{\partial w_i}
\]
Backpropagation for a sequence of functions
Backpropagation for a sequence of functions

\[f_i(z_{i-1}) = g(w_i) \]
Chain rule for vectors

\[
\frac{\partial a}{\partial b} = \frac{\partial a}{\partial c} \frac{\partial c}{\partial b}
\]

\[
\frac{\partial a_i}{\partial b_j} = \sum_k \frac{\partial a_i}{\partial c_k} \frac{\partial c_k}{\partial b_j}
\]

\[
\frac{\partial a}{\partial b}(i, j) = \frac{\partial a_i}{\partial b_j}
\]

The Jacobian

\[
\frac{\partial a}{\partial b} = \frac{\partial a}{\partial c} \frac{\partial c}{\partial b}
\]
Loss as a function
Beyond sequences: computation graphs

• Arbitrary graphs of functions
• No distinction between intermediate outputs and parameters
Computation graph - Functions

• Each node implements two functions
 • A “forward”
 • Computes output given input
 • A “backward”
 • Computes derivative of z w.r.t input, given derivative of z w.r.t output
Computation graphs
Computation graphs
Stochastic gradient descent

• Gradient on single example = unbiased sample of true gradient
• Idea: at each iteration sample single example $x^{(t)}$

$$w^{(t+1)} \leftarrow w^{(t)} - \lambda \nabla_w L(h_w(x^{(t)}), y^{(t)})$$

step size

• Con: variance in estimate of gradient \rightarrow slow convergence, jumping near optimum
Minibatch stochastic gradient descent

- Compute gradient on a small batch of examples
- Same mean (=true gradient), but variance inversely proportional to minibatch size

\[\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} - \lambda \frac{1}{|B(t)|} \sum_{(x,y) \in B^{(t)}} \nabla_{\mathbf{w}} L(h_{\mathbf{w}}(x), y) \]
Momentum

• *Average* multiple gradient steps
• *Use* exponential averaging

\[
p^{(t+1)} \leftarrow (1 - \mu)p^{(t)} - \mu \frac{1}{|B^{(t)}|} \sum_{(x,y) \in B^{(t)}} \nabla_w L(h_w(x), y)
\]

\[
w^{(t+1)} \leftarrow w^{(t)} - \lambda p^{(t+1)}
\]
Weight decay

• Add $-a\mathbf{w}^{(t)}$ to the gradient
• Prevents $\mathbf{w}^{(t)}$ from growing to infinity
• Equivalent to L2 regularization of weights
Learning rate decay

- Large step size / learning rate
 - Faster convergence initially
 - Bouncing around at the end because of noisy gradients
- Learning rate must be decreased over time
- Usually done in steps
Convolutional network training

• Initialize network
• Sample *minibatch* of images
• Forward pass to compute loss
• Backpropagate loss to compute gradient
• Combine gradient with momentum and weight decay
• Take step according to current learning rate