
Reconstruction - II

September 6, 2017

1 Brief recap

In the last lecture, we talked about the essential matrix. To recap, we found
that given two images taken by a pair of cameras for which we know the intrinsic
parameters K, we can derive a constraint on pairs of corresponding pixels. First,
let’s write down the projection equations:

~p1 ∼ K1[R1|t1]~P (1)

~p2 ∼ K2[R2|t2]~P (2)

Now, if we know K1 and K2, we can simply set ~p1 ← K−1
1 ~p1 and ~p2 ← K−1

2 ~p2

and eliminate it out of the equation.
Since we don’t have a coordinate system a priori, we can use the first cam-

era’s coordinate system as the coordinate system of choice. This leads to the
equations

~p1 ∼ [I|0]~P (3)

~p2 ∼ [R|t]~P (4)

Next, we write ~P in terms of the non-homogenous coordinates P as

(
P
1

)
,

and replace equivalence with equality by adding a free scale parameter:

λ1~p1 = P (5)

λ2~p2 = RP + t (6)

Substituting the first equation into the second, we get:

λ2~p2 = λ1R~p1 + t (7)

Taking a cross product with t and then taking a dot product with ~p2 gives:

λ2~p2 · (t× ~p2) = λ1~p2 · (t×R~p1) + ~p2 · (t× t) (8)
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The LHS and the last term on the RHS are 0, so we have:

~p2 · (t×R~p1) = 0 (9)

⇒ ~pT
2 t×R~p1 = 0 (10)

⇒ ~pT
2 E~p1 = 0 (11)

where the Essential matrix E = t×R. We saw last time that from 8 correspon-
dences, we can estimate E and thus both t× and R. Thus, from 8 correspon-
dences, we can calibrate both cameras w.r.t each other.

However, this constraint, called the epipolar constraint, is also a constraint
on the correspondences between the two images. Recall that in the last lecture,
we saw that to reconstruct the 3D location of a pixel, we need the location of
the corresponding pixel in another image. The epipolar constraint tells us that
this corresponding pixel cannot be located in an arbitrary location in the other
image.

2 Consequences of the epipolar constraint

2.1 The corresponding pixel lies on a line

The epipolar constraint is that for corresponding pixels ~p1 and ~p2, ~pT
2 E~p1 = 0.

If we fix ~p2, then we end up with an equation in ~p1:

lT ~p1 = 0 (12)

where l = ET ~p2. If l = (lx, ly, lz)T , and ~p1 = (x, y, 1)T , then this equation is
lxx + lyy + lz = 0, i.e., the equation of a line. This line is called the epipolar
line in the first image corresponding to point ~p2 in the second image.

Similarly, if we fix ~p1, then we get an epipolar line in the second image:

~pT
1 l = 0 (13)

where l = E~p1.

2.2 All epipolar lines intersect at a point

What are epipolar lines physically? As we have seen previously, pixel ~p1 in the
first image corresponds to a ray in the 3D world. This ray passes through the
pinhole of the first camera, and the image pixel in question. When photographed
by the second camera, this ray appears as a line. This line is the epipolar line:
the true 3D point corresponding to this image pixel must lie somewhere along
this ray, and so its image in the second camera must lie somewhere along this
line.

Clearly, the rays corresponding to different pixels ~pi in the first image all
pass through the first camera’s pinhole. This means that the corresponding
epipolar lines in the second image must pass through the image of the first
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camera’s pinhole in the second camera. Similarly, epipolar lines in the first
image must pass through the image of the second camera’s pinhole in the first
camera. Let’s verify this mathematically.

Let us first look at the image of the first camera’s pinhole in the second
camera. The first camera’s pinhole is at the origin of our chosen coordinate
system. The image of this in the second camera is therefore:

λ2~c2 = R

 0
0
0

+ t = t (14)

⇒ ~c2 ∼ t (15)

Now consider any point ~p1 in the first image. The corresponding epipolar line
is given by l = E ~p1. Then,

~cT2 l ∼ ~cT2 E~p1 (16)

∼ ~cT2 t×R~p1 (17)

∼ tT t×R~p1 (18)

∼ t · (t×R~p1) (19)

= 0 (20)

Thus ~c2 lies on l for all epipolar lines l in the second image.
Next let us look at the image of the second camera’s pinhole in the first

camera. To do that we need the location of the second camera’s pinhole. In the

second camera’s coordinate system, this is at

 0
0
0

. But we know that the

second camera is related to the first camera by rotation R and translation t.
So we have that:  0

0
0

 = RC + t (21)

⇒ C = −RT t (22)

The image location of this is given by ~c1 ∼ C = −RT t. Again, for any point
~p2 in the second image, if l = ET ~p2 is the epipolar line, then:

lT~c1 = ~p2t×R(−RT t) = −~p2t×t = 0 (23)

Thus all epipolar lines in the first image pass through c1, which is the epipole
in the first image.

3



3 Special case 1: Pure translation along X

Consider the case when the two cameras are pointing in the same direction and

are separated only along the X axis. In this case R = I, and t =

 tx
0
0

.

Then the epipole ~c2 = t. Since the z coordinate is 0, this point is at infinity
along the X axis. Thus all epipolar lines in the second image are horizontal and
parallel to each other. Similarly, epipolar lines in the first image are horizontal
and parallel to each other.

We can also say more about where points project in the two images. Consider
the projections of a point P = (X,Y, Z). For the first camera:

~p1 ∼ P =

 X
Y
Z

 (24)

⇒ p1 =

(
X
Z
Y
Z

)
(25)

(26)

where the second equation converts into non-homogenous coordinates. Similarly,
for the second camera:

~p2 ∼ P + t =

 X + tx
Y
Z

 (27)

⇒ p2 =

(
X+tx

Z
Y
Z

)
(28)

(29)

Thus, the two images have the same y coordinate, but the x coordinate
differs by tx

Z . This means two things:

1. Given a pixel in one image, to find its correspondence in the other image,
we simply need to search along the same row. This makes searching for
correspondence exceedingly simple.

2. Once the corresponding pixel in the other image is found, reconstructing
the depth of this point is also very simple, amounting to simply inverting
the difference in the X coordinate of the two pixels.

The difference between x coordinates is called the disparity, and clearly, it is
inversely proportional to depth. Given the baseline tx, knowing the correspon-
dence between pixels gives their disparity and thus their depth. In this case,
we can create a disparity image in which each pixel has as its value the corre-
sponding disparity.
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Because of the simplicity of the calculations in this case, many stereo rigs
will use this setup of cameras pointing in the same direction but translated
perpendicular to the viewing direction (eg. Kinect). Our eyes use a very similar
setup.

Note that, denoting disparity by d,

d =
tx
Z

(30)

⇒ ∆d = − tx
Z2

∆Z (31)

⇒ ∆Z ∝ Z2∆d (32)

This means that the error in depth estimation increases as the square of the
depth. Because of this, stereo-based depth estimation is most accurate for
points close to the camera.

4 Special case 2: Pure rotation

Consider the case when the two cameras are at the same location, but are simply
rotated. Thus t = 0. Thus:

λ2~p
2 = P2 = RP1 = λ1R~p

1 (33)

In this case, the two images are related by a fixed linear transformation of the
homogenous coordinates. This has two important implications. First, in this
case, the two images offer no additional information to locate the points in 3D.
Second, it is possible to rotate a camera in place ”virtually” without requiring
any knowledge of the 3D structure.

4.1 Rectifying images

As we saw above, if two cameras are related by a pure rotation, then their
corresponding images are related by a simple linear transformation of the coor-
dinates. This means that we can produce one image from the other simply by
copying the pixel at the appropriate location, without knowing what 3D point
they correspond to.

Now consider the general case where two cameras are related to each other
through an arbitrary rotation and translation. Suppose we know the rotation
and translation, for example, from the essential matrix. Then, we can rotate
both cameras in place so that they use the same coordinate system, but are just
translated w.r.t each other. Concretely, define a new coordinate system with
the new X axis along the translation vector between the two cameras, and with
Y and Z axes being perpendicular. We can then rotate both cameras in place
till their coordinate system matches this new set of axes; they are now simply
translated along X. This produces the simple setup of two cameras parallel to
each other translated along the X axis. This is usually the first step of many
stereo algorithms and is called “stereo rectification”.
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5 Special case 3: Points on a plane

Suppose we have a point P on a plane given by equation NTX = d. The
corresponding image is ~p1 in image 1. Then:

λ1~p1 = P (34)

Putting this into the equation of the plane:

λ1N
T ~p1 = d

⇒ λ1 =
d

NT ~p1
(35)

We can now look at this point in the coordinate system in camera 2:

λ2~p2 = RP + t

= d
NT ~p1

R~p1 + t (36)

= d
NT ~p1

(R~p1 + t
dN

T ~p1) (37)

= d
NT ~p1

(R + t
dN

T )~p1 (38)

= λH~p1 (39)

⇒ ~p2 ∼ H~p1 (40)

where H = (R + t
dN

T ) in homogenous coordinates.
Thus, for points on a plane, there is a direct linear mapping from one image

to another. Note that even though the camera motion is general, in this case
we obtain a direct mapping because we know something about the world. This
is much stronger than the epipolar constraint.

Given 4 corresponding points in the two images, we can solve for H (it has
9 parameters, but one extra degree of freedom). This is unlike the essential
matrix, which requires 8 correspondences.

What happens if in estimating the essential matrix we take 8 correspondences
from the same plane? Consider the matrix E(u) = u×H for some arbitrary
vector u. Then, for corresponding points ~p1 and ~p2 from this plane:

~pT
2 E(u)~p1 ∼ ~pT

2 u×H~p1 ∼ ~pT
2 u×~p2 = 0 (41)

Thus there is an entire family of matrices that satisfy the epipolar constraint.
Therefore, if we are just given correspondences from the same plane, we cannot
estimate the essential matrix.

Note that H contains the camera translation t and the distance of the plane
from the origin / camera 1, d, only appear as a ratio. Thus, two pictures of
a nearby plane taken close to each other are mathematically equivalent to two
pictures of a far away plane taken far apart.

H is called a planar homography.
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6 The uncalibrated case

Till now we have assumed that we know K1 and K2. What if we don’t?
In this case, we can again produce an epipolar constraint. First, let’s write

down the projection equations:

~p1 ∼ K1[R1|t1]~P (42)

~p2 ∼ K2[R2|t2]~P (43)

We will first invert the transformations K1 and K2.

K−1
1 ~p1 ∼ K1[R1|t1]~P (44)

K−1
2 ~p2 ∼ K2[R2|t2]~P (45)

Since we don’t have a coordinate system a priori, we can use the first cam-
era’s coordinate system as the coordinate system of choice. This leads to the
equations

K−1
1 ~p1 ∼ [I|0]~P (46)

K−1
2 ~p2 ∼ [R|t]~P (47)

Next, we write ~P in terms of the non-homogenous coordinates P as

(
P
1

)
,

and replace equivalence with equality by adding a free scale parameter:

λ1K
−1
1 ~p1 = P (48)

λ2K
−1
2 ~p2 = RP + t (49)

Substituting the first equation into the second, we get:

λ2K
−1
2 ~p2 = λ1RK−1

1 ~p1 + t (50)

Taking a cross product with t and then taking a dot product with K−1
2 ~p2

gives:

λ2(K−1
2 ~p2) · (t×K−1

2 ~p2) = λ1(K−1
2 ~p2) · (t×RK−1

1 ~p1)+(K−1
2 ~p2) · (t×t) (51)

The LHS and the last term on the RHS are 0, so we have:

(K−1
2 ~p2) · (t×RK−1

1 ~p1) = 0 (52)

⇒ ~pT
2 K

−T
2 t×RK−1

1 ~p1 = 0 (53)

⇒ ~pT
2 F~p1 = 0 (54)

where the Fundamental matrix F = K−T
2 t×RK−1

1 = K−T
2 EK−1

1 .
Thus, there is still an epipolar constraint constraining correspondences.

However, now, if we know the fundamental matrix, we can no longer break
it down into R and t, because K1 and K2 are in general arbitrary matrices.
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