
Lonnie Princehouse (ljp37)
CS 6670 Spring 2011
Project 1

Note: OpenOffice gives me a mysterious error when I try to export this as HTML. So here's a PDF instead.

Custom Feature Descriptor

My custom feature descriptor consists of a MOPS descriptor along with data derived from a hue histogram generated by the
pixels sampled in the MOPS patch. This is an attempt to inform the MOPS descriptor with color information, but I can't say
it was particularly successful.

First, 32x32 pixels are sampled from the MOPS patch area of the original image, and their color values converted from
RGB to HSV. Saturation and value are discarded, and a histogram is built from the hue values. There are 8 buckets in the
histogram; I also tried 16, but it doesn't seem to make much difference.

A hue descriptor is then computed as the difference of histogram buckets separated by distance 1, distance 2, etc. Further
differences are divided by two.

circular_difference(dist) = { hist[(i+dist)%n] – hist[i] * 2-(dist-1) | 0 <= i < nbuckets}
hue_descriptor = circular_difference(1) + circular_difference(2) + circular_difference(3)
(where + is vector concatenation)

The reason for using this differencing scheme instead of just the histogram is that comparing descriptors by taking the
squared difference of buckets in the histogram would miss the relationship between adjacent buckets; a descriptor with a
high value in histogram_bucket[1] should be closer to a descriptor with a high value in histogram_bucket[2] than
histogram_bucket[5], because these adjacent buckets represent nearby hues.

Design Choices
My MOPS descriptor gaussian blurs the image before sampling the MOPS patch; this is an attempt to reduce aliasing by
eliminating the highest frequencies.

Sub-pixel sampling with linear interpolation is used for MOPS and my custom descriptor. This was easier to code than a
fancier interpolation, but is a dramatic improvement over no interpolation. For example, here's a rotated image using no
interpolation versus my linear interpolation for sub-pixel sampling:

Features.cpp contains a global config structure with various options, including whether to use ANMS or a basic threshold
on Harris values to cull unimportant features. The default is ANMS, which will start with a small feature radius and
gradually expand it until the number of features that are local maxima within their radius does not exceed an ANMS upper
bound. The default is <= 150 features.

I ended up writing a limited-functionality matrix class that is sufficient for 2D affine transformations. The * operator is
overloaded, which makes the various transforms needed for the MOPS operator rather elegant in code:

 // move feature to the origin
 Matrix translate = Matrix::translation(f.x, f.y);

 // orient according to feature angle
 Matrix rotate = Matrix::rotation(f.angleRadians);

 // translate so that corner of descriptor patch is at the origin
 Matrix translate2 = Matrix::translation(patch_size/2, patch_size/2);

 // scale to patch coordinates (MOPS_DESCRIPTOR_WINDOW_SIZE)
 Matrix scale = Matrix::scale(((double)config.MOPS_DESCRIPTOR_WINDOW_SIZE) / patch_size);

 Matrix patch_coordinates = scale * translate2 * rotate * translate;
 Matrix image_coordinates = patch_coordinates.inverse();

 for(int u = 0; u < config.SIMPLE_DESCRIPTOR_WINDOW_SIZE; u++) {
 for(int v = 0; v < config.SIMPLE_DESCRIPTOR_WINDOW_SIZE; v++) {

double x = u, y = v;
image_coordinates.affine_transform(x,y);
data.data[u][v] = sample_subpixel(image, x, y, 0);

 }
 }

But it really would have been nice to be able to use one of the many open source linear algebra libraries for C++ instead.
All of my code is in features.cpp, with the exception of the rgb-to-hsv function in rgb_hsv.h which I shamelessly copied and
pasted (attribution in the header file).

Performance

1. ROC curves

ROC curves for graf img1, img2. Sadly, MOPS is worse than simple 5x5?

ROC curves for yosemite benchmark. MOPS redeems itself.

2. Harris operator images, shown side-by-side with original grayscale image. Harris images are normalized.

 Bikes benchmark average AUC
Descriptor SSD Ratio

Simple 5x5 0.36 0.53
MOPS 0.6 0.61
Custom 0.6 0.62

Graf benchmark average AUC
Descriptor SSD Ratio

Simple 5x5 0.56 0.51
MOPS 0.59 0.54
Custom 0.514 0.53

Leuven benchmark average AUC
Descriptor SSD Ratio

Simple 5x5 0.26 0.59
MOPS 0.51 0.49
Custom 0.52 0.56

Wall benchmark average AUC
Descriptor SSD Ratio

Simple 5x5 0.52 0.53
MOPS 0.6 0.56
Custom 0.52 0.6

Strengths and Weaknesses
Custom descriptor doesn't work very well.

C++ is intensely frustrating, especially if you want to write efficient code. I wasted hours in a special hell devised of
auto_ptr and references.

My Own Images
Here's a picture of MOPS + ratio test getting a matching spectacularly wrong on a couple of pictures I took for a panorama
near Mt. Baker, WA. The nicely distributed features are due to ANMS, set to 50 features for this example. To the naked
eye, it's clear that a lot of features do align, but their angles are not consistent from picture to picture. Maybe I should have
gaussian blurred the x- and y- derivatives to make them a little less sensitive when trying to compute the gradient...

Extra Credit
Implemented ANMS. See features.cpp :: computeLocalMaxima for details.

	Custom Feature Descriptor
	Design Choices
	Performance
	 Bikes benchmark average AUC
	Graf benchmark average AUC
	Leuven benchmark average AUC
	Wall benchmark average AUC

	Strengths and Weaknesses
	My Own Images
	Extra Credit

