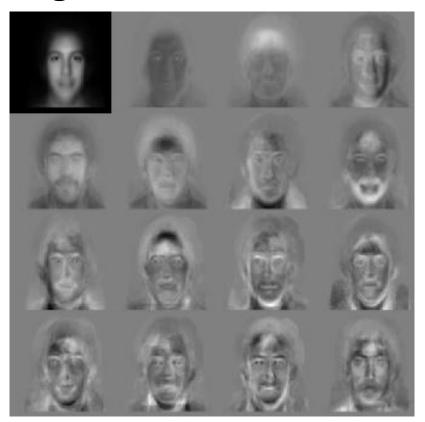
CS6670: Computer Vision

Noah Snavely

Lecture 15: Eigenfaces

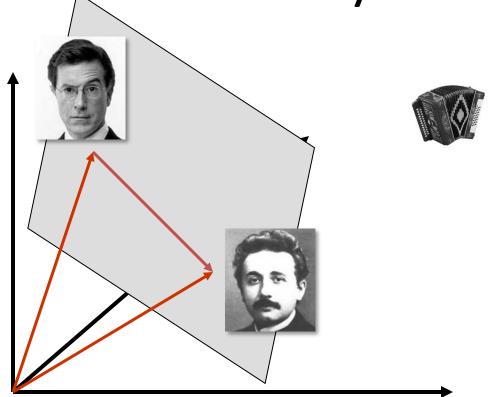


Announcements

Wednesday's class is cancelled

My office hours moved to tomorrow (Tuesday)
 1:30-3:00

Dimensionality reduction

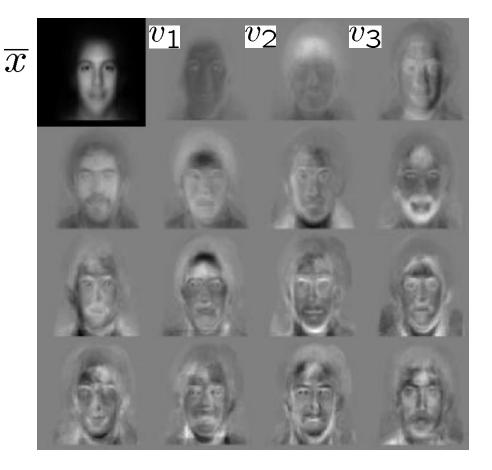


- The set of faces is a "subspace" of the set of images
 - Suppose it is K dimensional
 - We can find the best subspace using PCA
 - This is like fitting a "hyper-plane" to the set of faces
 - spanned by vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_K}$
 - any face $\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_k \mathbf{v}_k$

Eigenfaces

PCA extracts the eigenvectors of A

- Gives a set of vectors v₁, v₂, v₃, ...
- Each one of these vectors is a direction in face space
 - what do these look like?



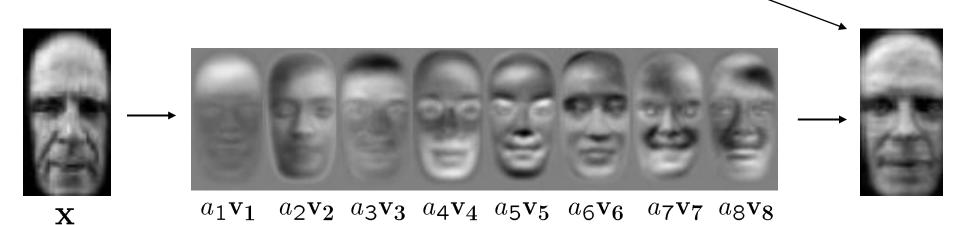
Projecting onto the eigenfaces

The eigenfaces $\mathbf{v_1}$, ..., $\mathbf{v_K}$ span the space of faces

A face is converted to eigenface coordinates by

$$\mathbf{x} \to (\underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v_1}}_{a_1}, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v_2}}_{a_2}, \dots, \underbrace{(\mathbf{x} - \overline{\mathbf{x}}) \cdot \mathbf{v_K}}_{a_K})$$

$$\mathbf{x} \approx \overline{\mathbf{x}} + a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \ldots + a_K \mathbf{v}_K$$



Detection and recognition with eigenfaces

Algorithm

- 1. Process the image database (set of images with labels)
 - Run PCA—compute eigenfaces
 - Calculate the K coefficients for each image
- 2. Given a new image (to be recognized) **x**, calculate K coefficients

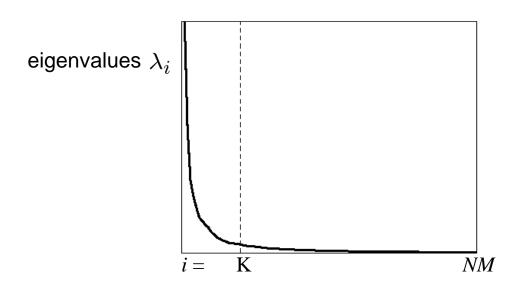
$$\mathbf{x} \to (a_1, a_2, \dots, a_K)$$

Detect if x is a face

$$\|\mathbf{x} - (\overline{\mathbf{x}} + a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_K\mathbf{v}_K)\| < \text{threshold}$$

- 4. If it is a face, who is it?
 - Find closest labeled face in database
 - nearest-neighbor in K-dimensional space

Choosing the dimension K



How many eigenfaces to use?

Look at the decay of the eigenvalues

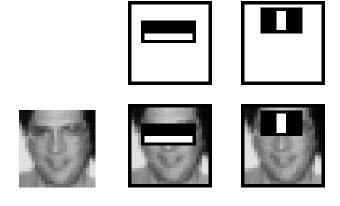
- the eigenvalue tells you the amount of variance "in the direction" of that eigenface
- ignore eigenfaces with low variance

Issues: metrics

What's the best way to compare images?

- need to define appropriate features
- depends on goal of recognition task

exact matching complex features work well (SIFT, MOPS, etc.)



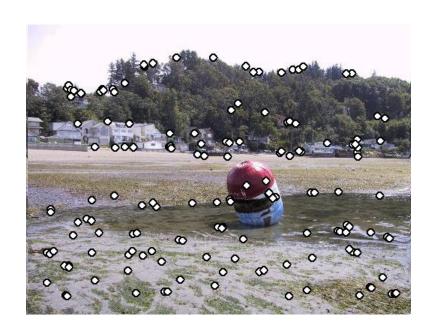
classification/detection simple features work well (Viola/Jones, etc.)

Metrics

Lots more feature types that we haven't mentioned

- moments, statistics
 - metrics: Earth mover's distance, ...
- edges, curves
 - metrics: Hausdorff, shape context, ...
- 3D: surfaces, spin images
 - metrics: chamfer (ICP)
- •

Issues: feature selection



If all you have is one image: non-maximum suppression, etc.

If you have a training set of images: AdaBoost, etc.

Issues: data modeling

Generative methods

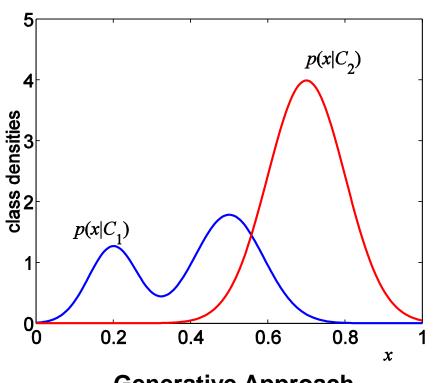
- model the "shape" of each class
 - histograms, PCA, mixtures of Gaussians
 - graphical models (HMM's, belief networks, etc.)

– ...

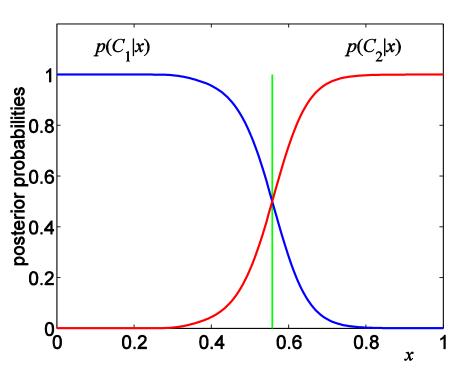
Discriminative methods

- model boundaries between classes
 - perceptrons, neural networks
 - support vector machines (SVM's)

Generative vs. Discriminative



Generative Approach model individual classes, priors

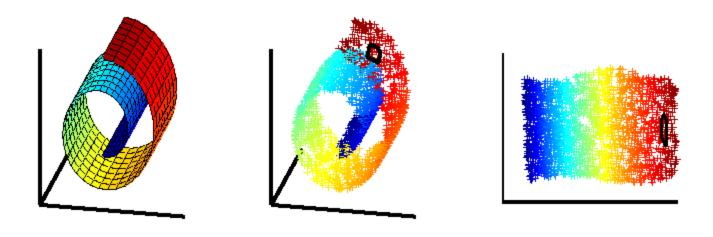


Discriminative Approach model posterior directly

Issues: dimensionality

What if your space isn't *flat*?

PCA may not help



Nonlinear methods LLE, MDS, etc.

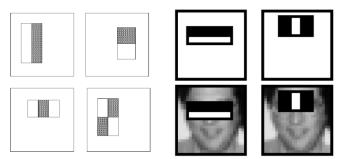
Issues: speed

- Case study: Viola Jones face detector
- Exploits two key strategies:
 - simple, super-efficient features
 - pruning (cascaded classifiers)

- Next few slides adapted Grauman & Liebe's tutorial
 - http://www.vision.ee.ethz.ch/~bleibe/teaching/tutorial-aaai08/
- Also see Paul Viola's talk (video)
 - http://www.cs.washington.edu/education/courses/577/04sp/contents.html#DM

Feature extraction

"Rectangular" filters

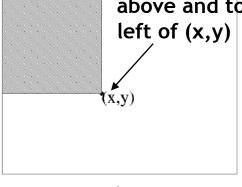


Feature output is difference between adjacent regions

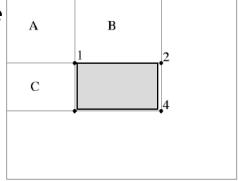
Efficiently computable with integral image: any sum can be computed in constant time

Avoid scaling images \rightarrow scale features directly for same cost

Value at (x,y) is sum of pixels above and to the left of (x,y)



Integral image



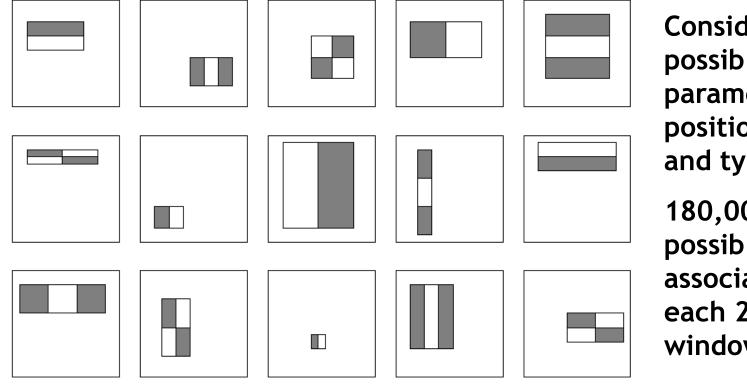
$$D = 1 + 4 - (2 + 3)$$

$$= A + (A + B + C + D) - (A + C + A + B)$$

$$= D$$

Viola & Jones, CVPR 2001

Large library of filters



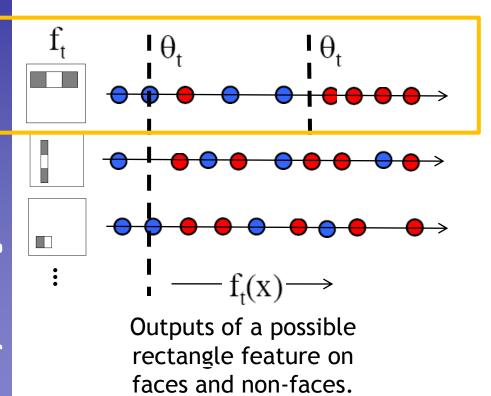
Considering all possible filter parameters: position, scale, and type:

180,000+
possible features
associated with
each 24 x 24
window

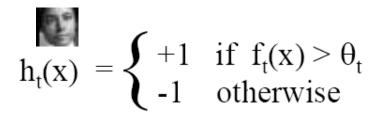
Use AdaBoost both to select the informative features and to form the classifier

AdaBoost for feature+classifier selection

 Want to select the single rectangle feature and threshold that best separates positive (faces) and negative (nonfaces) training examples, in terms of weighted error.

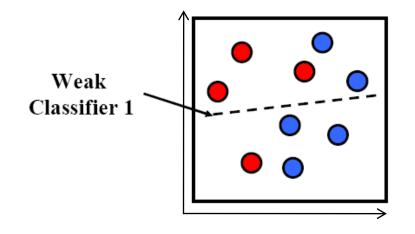


Resulting weak classifier:



For next round, reweight the examples according to errors, choose another filter/threshold combo.

AdaBoost: Intuition

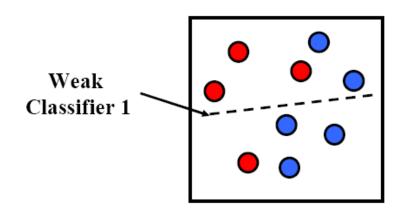


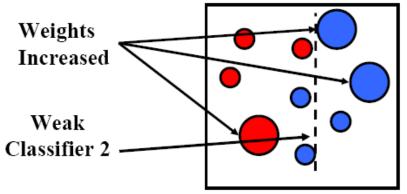
Consider a 2-d feature space with positive and negative examples.

Each weak classifier splits the training examples with at least 50% accuracy.

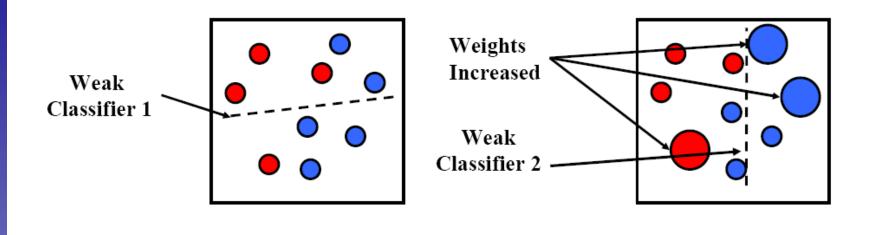
Examples misclassified by a previous weak learner are given more emphasis at future rounds.

AdaBoost: Intuition





AdaBoost: Intuition



Weak classifier 3
er is of the

Final classifier is combination of the weak classifiers

- Given example images $(x_1, y_1), \dots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

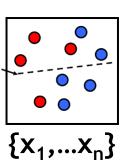
• The final strong classifier is:

where $\alpha_t = \log \frac{1}{\beta_t}$

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

AdaBoost Algorithm

Start with
uniform weights
on training
examples



For T rounds

Evaluate

weighted error

for each feature,

pick best.

Re-weight the examples:

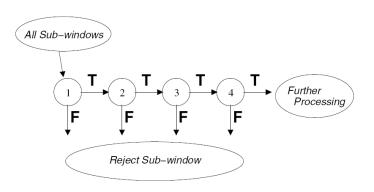
- Incorrectly classified -> more weight Correctly classified -> less weight
- Final classifier is combination of the weak ones, weighted according to error they had.

an, B. Leibe Freund & Schapire 1995

Cascading classifiers for detection

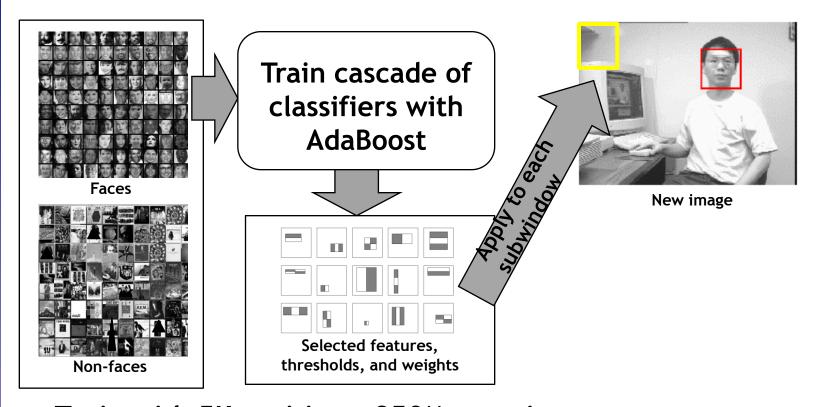
For efficiency, apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative; e.g.,

- Filter for promising regions with an initial inexpensive classifier
- Build a chain of classifiers, choosing cheap ones with low false negative rates early in the chain

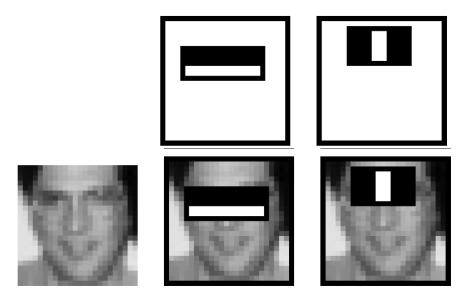


Fleuret & Geman, IJCV 2001 Rowley et al., PAMI 1998 Viola & Jones, CVPR 2001

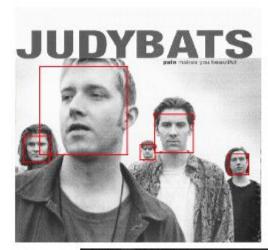
Viola-Jones Face Detector: Summary

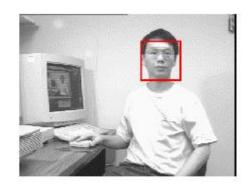


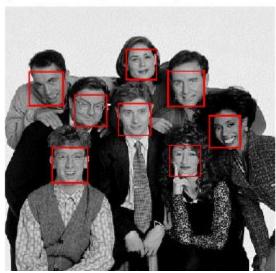
- Train with 5K positives, 350M negatives
- Real-time detector using 38 layer cascade
- 6061 features in final layer
- [Implementation available in OpenCV: http://www.intel.com/technology/computing/opencv/]

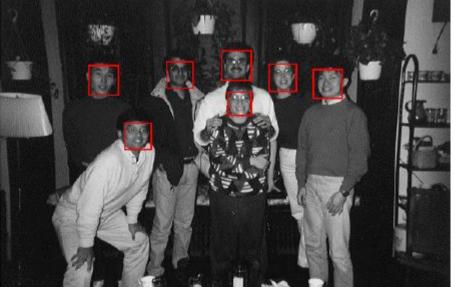


First two features selected

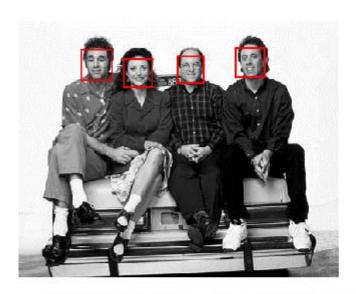


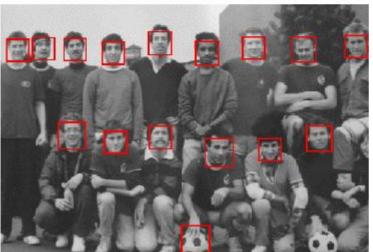


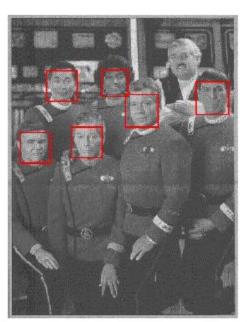


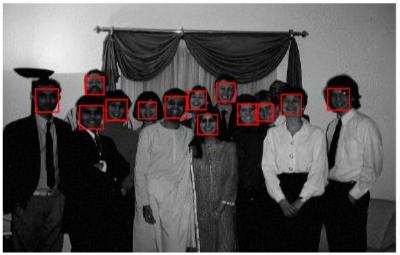


K. Grauman, B. Leibe





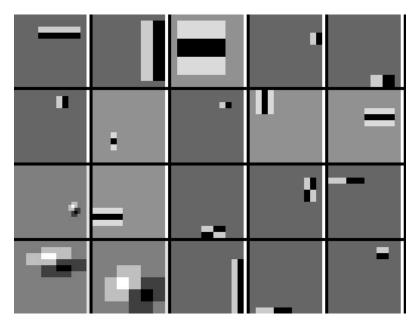




K. Grauman, B. Leibe

Detecting profile faces?

Detecting profile faces requires training separate detector with profile examples.





Questions?

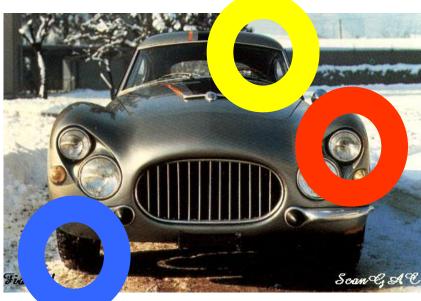
• 3-minute break

Moving forward

- Faces are pretty well-behaved
 - Mostly the same basic shape
 - Lie close to a subspace of the set of images

Not all objects are as nice

Different appearance, similar parts



Bag of Words Models

Adapted from slides by Rob Fergus

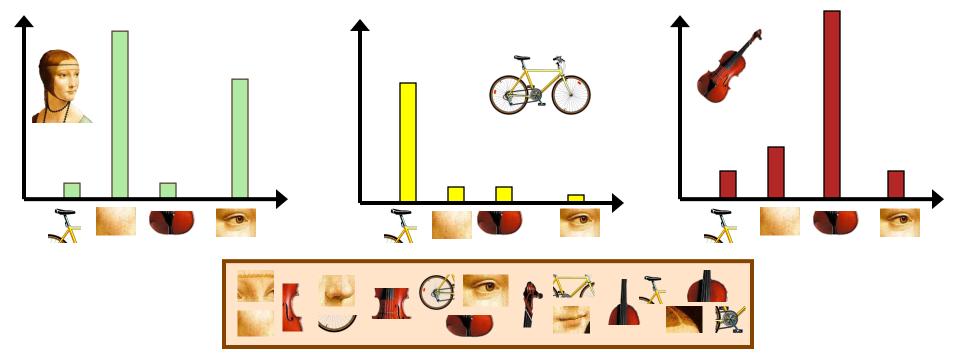
Object

Bag of 'words'

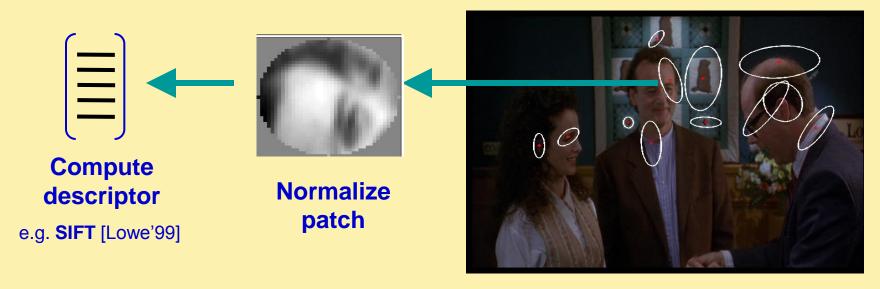
Bag of Words

Independent features

Histogram representation



1. Feature detection and representation



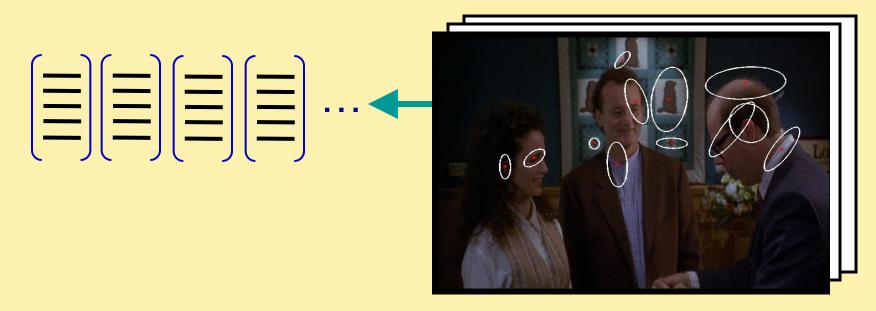
Detect patches

[Mikojaczyk and Schmid '02] [Mata, Chum, Urban & Pajdla, '02] [Sivic & Zisserman, '03]

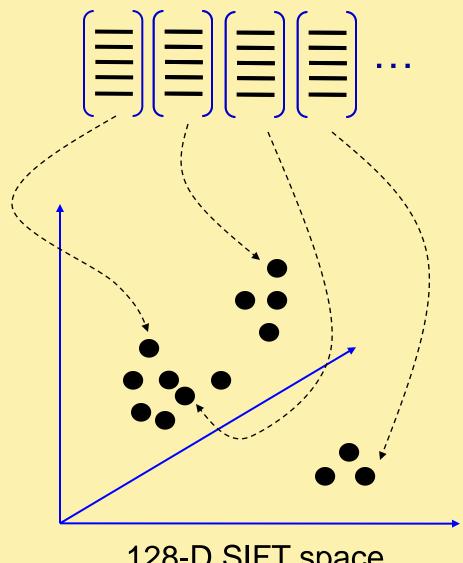
Local interest operator or Regular grid

Slide credit: Josef Sivic

1. Feature detection and representation

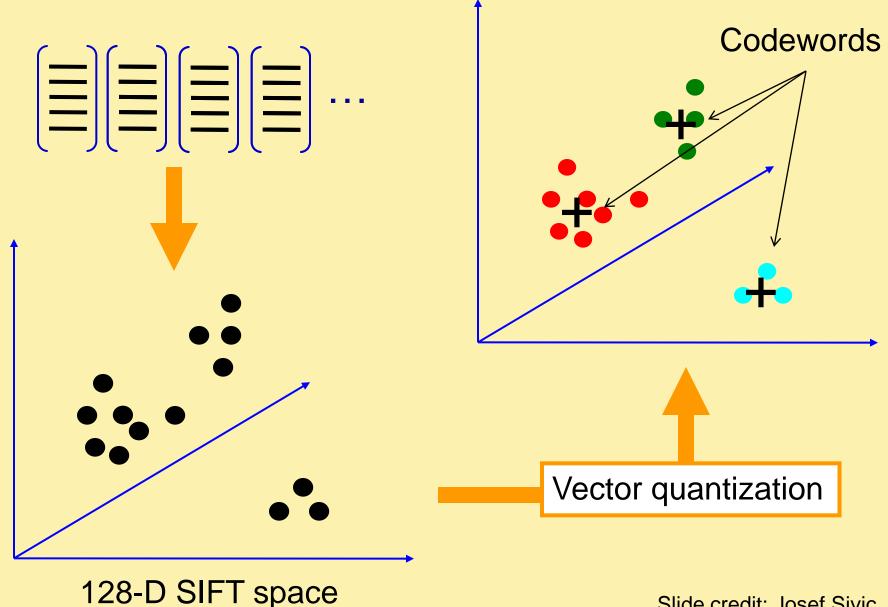


2. Codewords dictionary formation



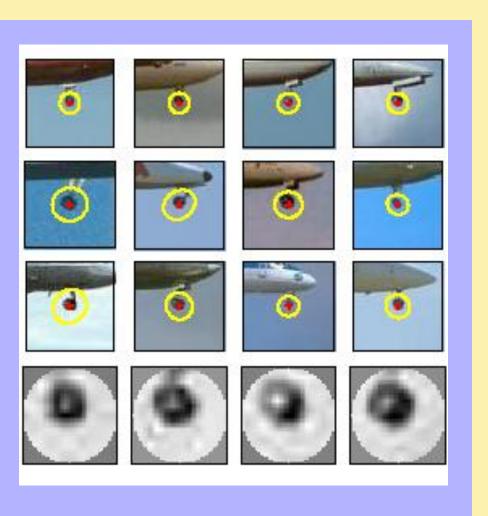
128-D SIFT space

2. Codewords dictionary formation



Slide credit: Josef Sivic

Image patch examples of codewords



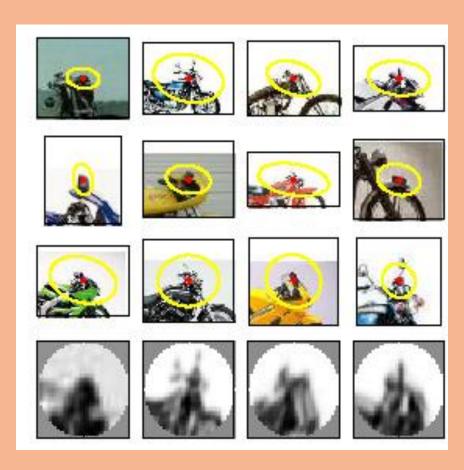


Image representation

Histogram of features assigned to each cluster

codewords

Uses of BoW representation

- Treat as feature vector for standard classifier
 - e.g k-nearest neighbors, support vector machine

- Cluster BoW vectors over image collection
 - Discover visual themes

What about spatial info?

