CS6670: Computer Vision Noah Snavely

Lecture 6: Image Warping and Projection

Readings

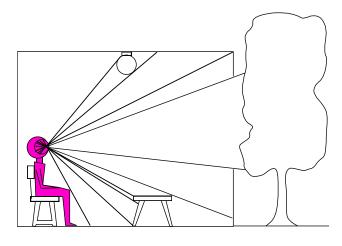
Szeliski Chapter 3.5 (image warping),
9.1 (motion models)

Announcements

Project 1 assigned, due next Friday 2/18

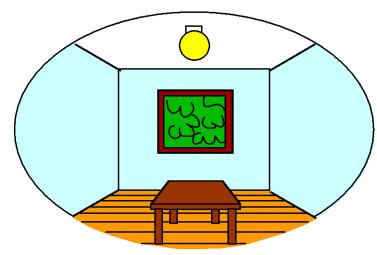
Dimensionality Reduction Machine (3D to 2D)

3D world



Point of observation

2D image



What have we lost?

- Angles
- Distances (lengths)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points → points
- Lines → lines (collinearity is preserved)
 - But line through focal point projects to a point
- Planes → planes (or half-planes)
 - But plane through focal point projects to line

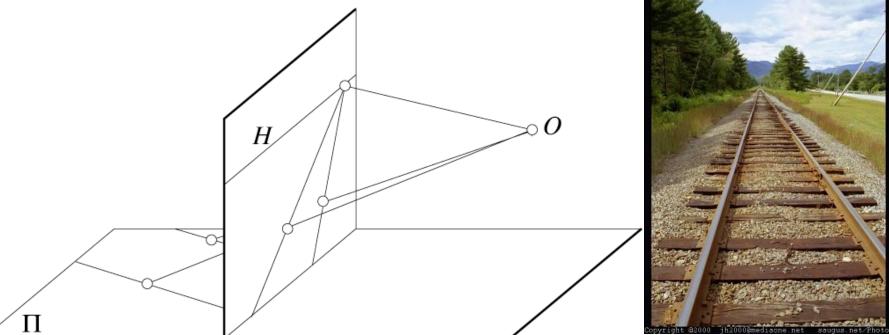
Projection properties

Parallel lines converge at a vanishing point

Each direction in space has its own vanishing point

- But parallels parallel to the image plane remain

parallel



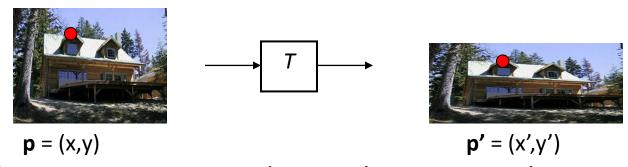
2D to 2D warps

- Let's start with simpler warps that map images to other images
- Examples of 2D \rightarrow 2D warps:

rotation

aspect

Parametric (global) warping



Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider linear xforms (can be represented by a 2D matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[egin{array}{c} x' \ y' \end{array}
ight] = \mathbf{T} \left[egin{array}{c} x \ y \end{array}
ight]$$

Common linear transformations

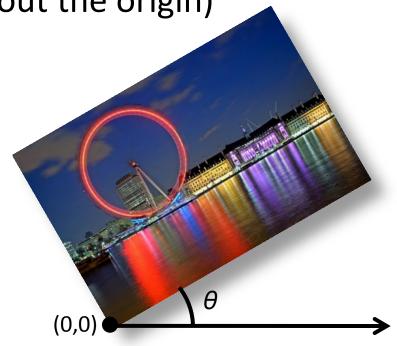
• Uniform scaling by s:

$$\mathbf{S} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

What is the inverse?

Common linear transformations

• Rotation by angle θ (about the origin)



$$\mathbf{R} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

What is the inverse? For rotations: $\mathbf{R}^{-1} = \mathbf{R}^T$

2x2 Matrices

 What types of transformations can be represented with a 2x2 matrix?

2D mirror about Y axis?

$$\begin{aligned}
 x' &= -x \\
 y' &= y
 \end{aligned}
 \mathbf{T} = \begin{bmatrix}
 -1 & 0 \\
 0 & 1
 \end{bmatrix}$$

2D mirror across line y = x?

$$x' = y$$
 $y' = x$
 $\mathbf{T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

2x2 Matrices

 What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + t_x$$
 $y' = y + t_y$

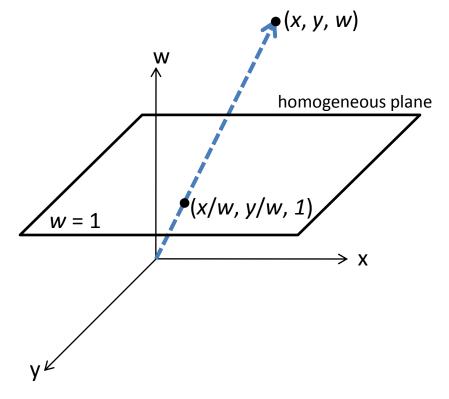
Translation is not a linear operation on 2D coordinates

Homogeneous coordinates

Trick: add one more coordinate:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates



Converting *from* homogeneous coordinates

$$\left[\begin{array}{c} x \\ y \\ w \end{array}\right] \Rightarrow (x/w, y/w)$$

Translation

Solution: homogeneous coordinates to the rescue

$$\mathbf{T} = \left[egin{array}{cccc} 1 & 0 & t_x \ 0 & 1 & t_y \ 0 & 0 & 1 \end{array}
ight]$$

$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Affine transformations

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

any transformation with last row [001] we call an affine transformation

$$\left[egin{array}{ccc} a & b & c \ d & e & f \ 0 & 0 & 1 \end{array}
ight]$$

Basic affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D *in-plane* rotation

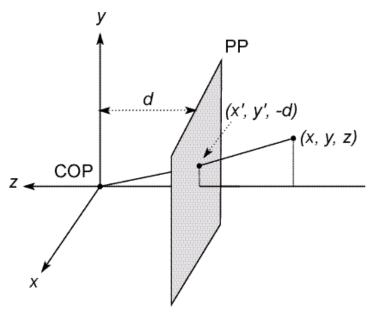
$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{s} \mathbf{h}_{x} & 0 \\ \mathbf{s} \mathbf{h}_{y} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Modeling projection



Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

• We get the projection by throwing out the last coordinate:

$$(x,y,z) \to (-d\frac{x}{z}, -d\frac{y}{z})$$

Modeling projection

- Is this a linear transformation?
 - no—division by z is nonlinear

Homogeneous coordinates to the rescue!

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

Converting *from* homogeneous coordinates

coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

$$(x, y, z) \Rightarrow \left| \begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right|$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as perspective projection

- The matrix is the **projection matrix**
- (Can also represent as a 4x4 matrix OpenGL does something like this)

Perspective Projection

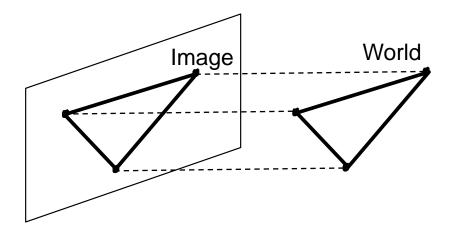
How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

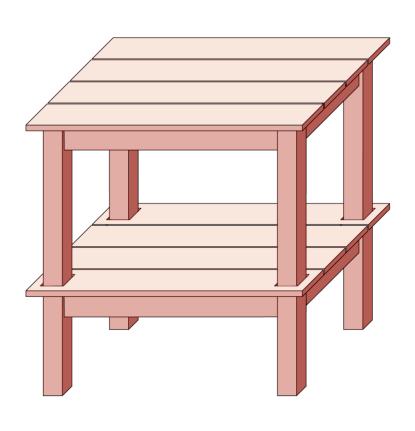
Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite



$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Orthographic projection



Perspective projection

Perspective distortion

What does a sphere project to?

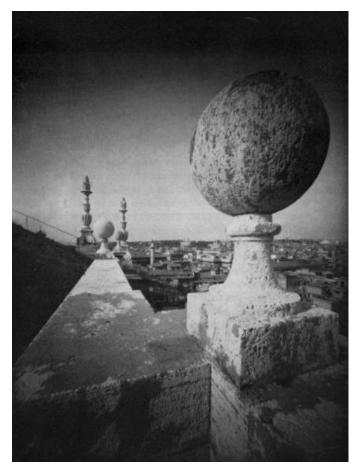
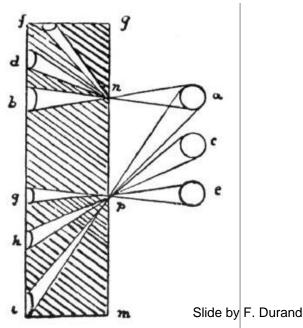


Image source: F. Durand

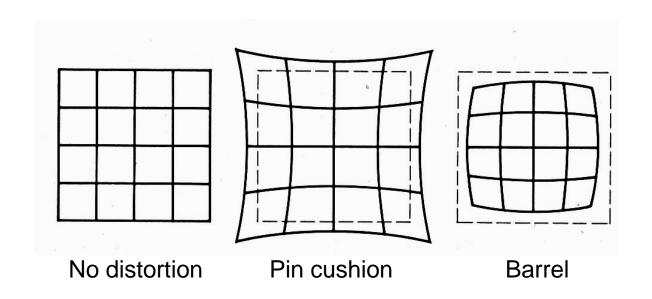
Perspective distortion

- The exterior columns appear bigger
- The distortion is not due to lens flaws
- Problem pointed out by Da Vinci



Perspective distortion: People

Distortion

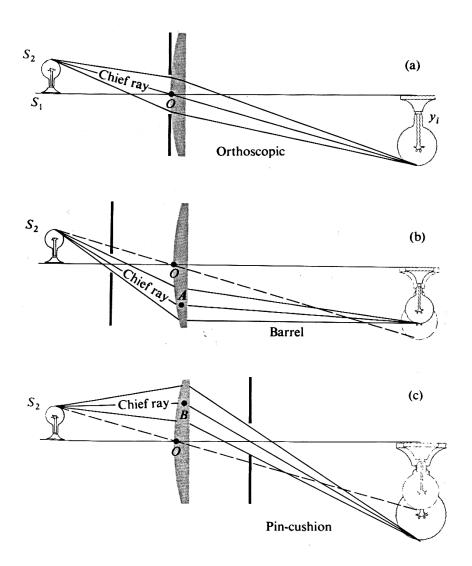


- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Distortion



Modeling distortion

Project
$$(\hat{x},\hat{y},\hat{z})$$
 $x_n' = \hat{x}/\hat{z}$ to "normalized" $y_n' = \hat{y}/\hat{z}$ $x_n' = \hat{y}/\hat{z}$ Apply radial distortion $x_d' = x_n'(1+\kappa_1r^2+\kappa_2r^4)$ $y_d' = y_n'(1+\kappa_1r^2+\kappa_2r^4)$ Apply focal length translate image center $x_n' = fx_d' + x_c$

- To model lens distortion
 - Use above projection operation instead of standard projection matrix multiplication

Other types of projection

- Lots of intriguing variants...
- (I'll just mention a few fun ones)

360 degree field of view...

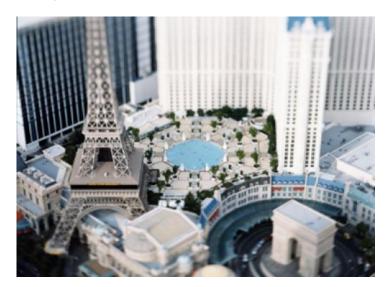
Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
 - see http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html





Titlt-shift images from Olivo Barbieri and Photoshop imitations

Camera parameters

How can we model the geometry of a camera?



Two important coordinate systems:

- 1. World coordinate system
- 2. Camera coordinate system

Camera parameters

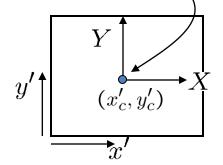
- To project a point (x,y,z) in world coordinates into a camera
- First transform (x,y,z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- The project into the image plane
 - Need to know camera intrinsics

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c) , pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

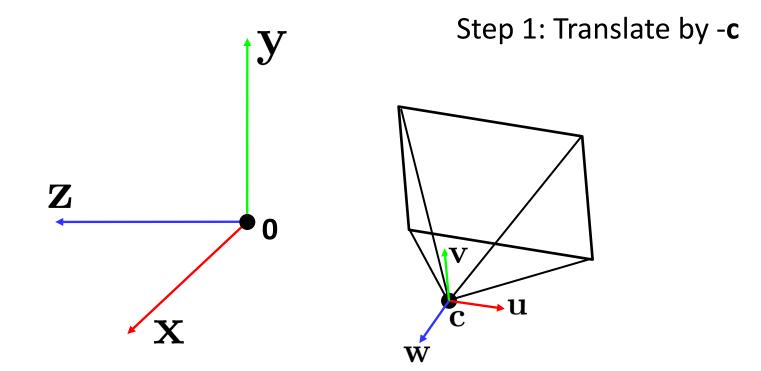


- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

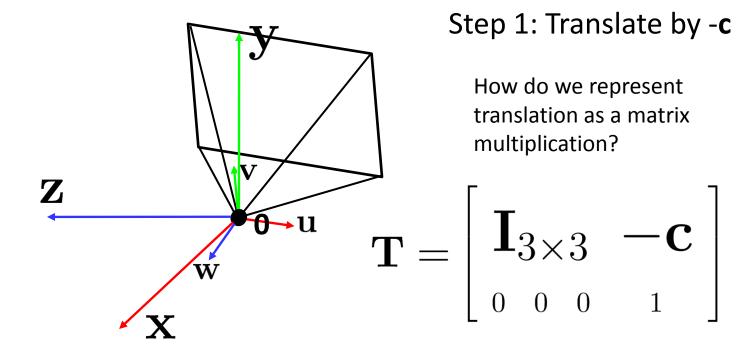
$$\boldsymbol{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$
intrinsics
projection
rotation
translation

- The definitions of these parameters are **not** completely standardized
 - especially intrinsics—varies from one book to another

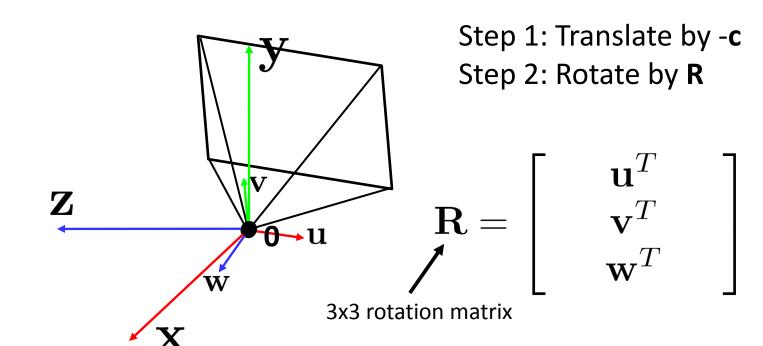
- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)



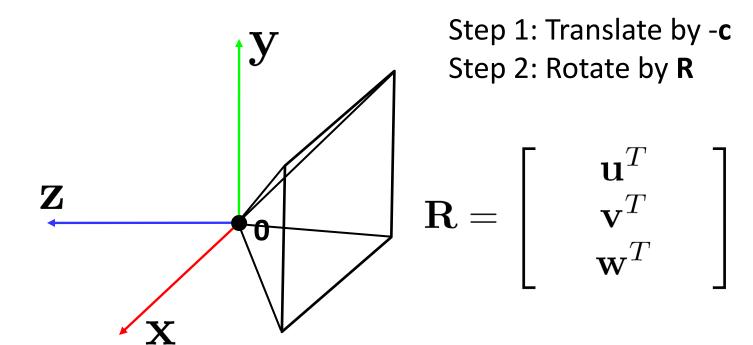
- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)



- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)



- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)



Perspective projection

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

in general,
$$\mathbf{K}= \left[egin{array}{cccc} -f & s & c_x \\ 0 & -lpha f & c_y \\ 0 & 0 & 1 \end{array}
ight]$$
 (upper triangular matrix)

(): aspect ratio (1 unless pixels are not square)

S: skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x,c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Focal length

Can think of as "zoom"

24mm

50mm

200mm

Also related to field of view

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

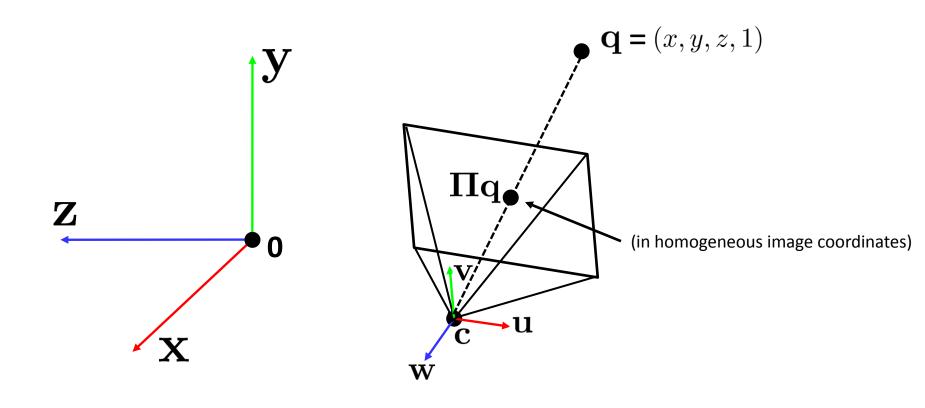
$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$(t \text{ in book's notation})$$

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

Projection matrix



Questions?

• 3-minute break

Image alignment

Full screen panoramas (cubic): http://www.panoramas.dk/ Mars: http://www.panoramas.dk/fullscreen3/f1.html 2003 New Years Eve: http://www.panoramas.dk/fullscreen3/f1.html

Why Mosaic?

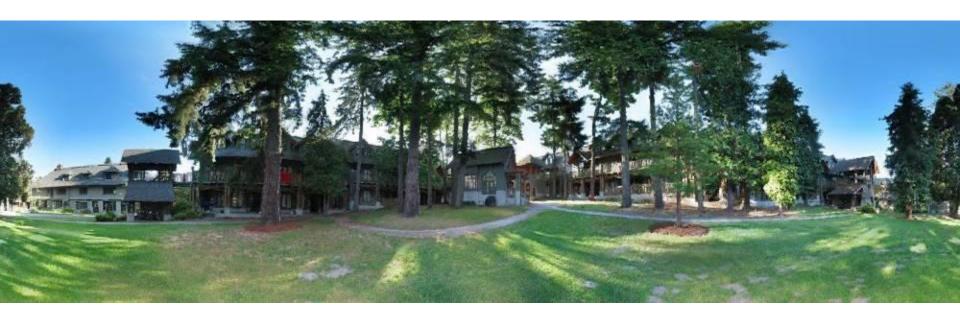
- Are you getting the whole picture?
 - Compact Camera FOV = $50 \times 35^{\circ}$

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = $50 \times 35^{\circ}$
 - Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- Are you getting the whole picture?
 - Compact Camera FOV = $50 \times 35^{\circ}$
 - Human FOV = $200 \times 135^{\circ}$
 - Panoramic Mosaic = $360 \times 180^{\circ}$



Mosaics: stitching images together

Readings

• Szeliski:

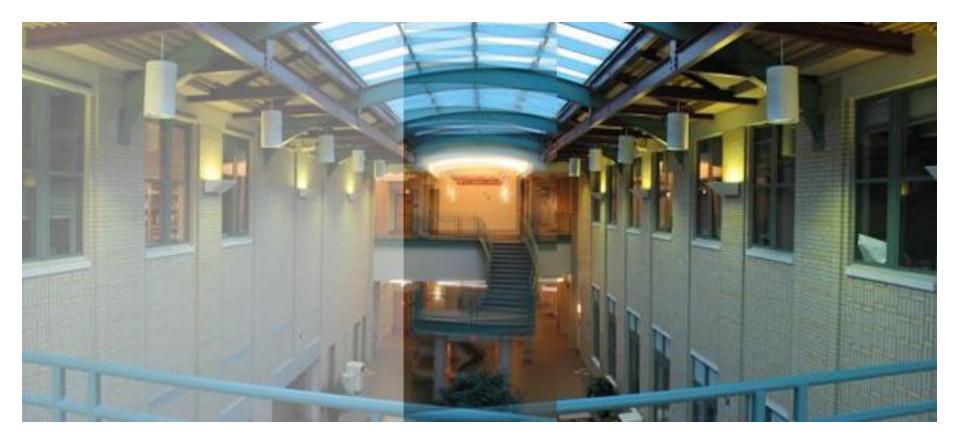
- Chapter 3.5: Image warping
- Chapter 5.1: Feature-based alignment
- Chapter 8.1: Motion models

Image alignment

Image taken from same viewpoint, just rotated.

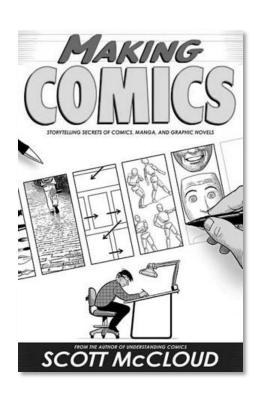
Can we line them up?

Image alignment



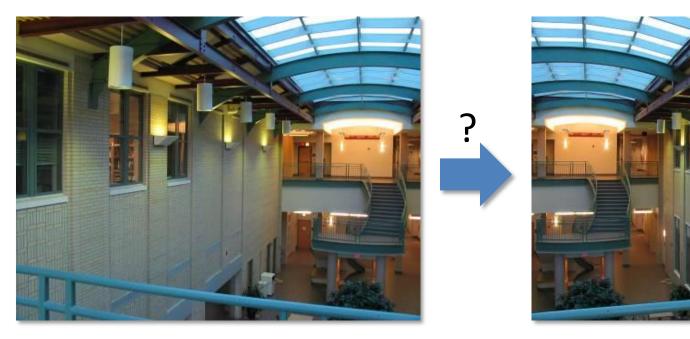
Why don't these image line up exactly?

What is the geometric relationship between these two images?



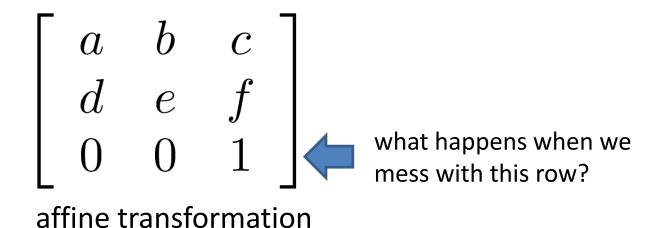


What is the geometric relationship between these two images?



Is this an affine transformation?

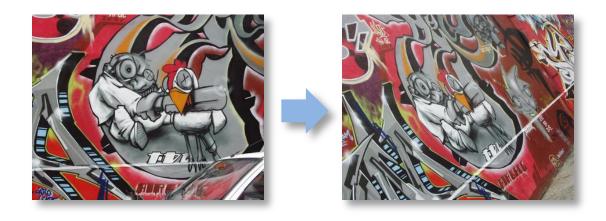
Where do we go from here?



Projective Transformations aka Homographies aka Planar Perspective Maps

$$\mathbf{H} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a homography (or planar perspective map)



Homographies

Example on board