CS6670: Computer Vision Noah Snavely

Lecture 5: Cameras and Projection

Reading

• Szeliski 2.1.3-2.1.6

Announcements

- Project 1 assigned, see projects page:
 - http://www.cs.cornell.edu/courses/cs6670/2011sp/projects/projects.html

Quiz 1 on Wednesday

Image formation

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does this transform the image?

Camera Obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

Home-made pinhole camera

http://www.debevec.org/Pinhole/

Pinhole photography

Justin Quinnell, The Clifton Suspension Bridge. December 17th 2007 - June 21st 2008 *6-month* exposure

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - *Diffraction* effects...

Shrinking the aperture

Adding a lens

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

Lenses

- A lens focuses parallel rays onto a single focal point
 - focal point at a distance f beyond the plane of the lens (the focal length)
 - *f* is a function of the shape and index of refraction of the lens
 - Aperture restricts the range of rays
 - aperture may be on either side of the lens
 - Lenses are typically spherical (easier to produce)

Thin lenses

- Thin lens equation: $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$
 - Any object point satisfying this equation is in focus
 - What is the shape of the focus region?
 - How can we change the focus region?
 - Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html (by Fu-Kwun Hwang)

Depth of Field

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus

Depth of Field

The eye

The human eye is a camera

- Iris colored annulus with radial muscles
- Pupil the hole (aperture) whose size is controlled by the iris
- What's the "film"?
 - photoreceptor cells (rods and cones) in the retina

Before Film

Lens Based Camera Obscura, 1568

Film camera

Still Life, Louis Jaques Mande Daguerre, 1837

Silicon Image Detector

Silicon Image Detector, 1970

Digital camera

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- A digital camera replaces film with a sensor array
 - Each cell in the array is a Charge Coupled Device
 - light-sensitive diode that converts photons to electrons
 - other variants exist: CMOS is becoming more popular
 - http://electronics.howstuffworks.com/digital-camera.htm

Color

- So far, we've talked about grayscale images
- What about color?
- Most digital images are comprised of three color channels – red, green, and, blue – which combine to create most of the colors we can see

Why are there three?

Color perception

- Three types of cones
 - Each is sensitive in a different region of the spectrum
 - but regions overlap
 - Short (S) corresponds to blue
 - Medium (M) corresponds to green
 - Long (L) corresponds to red
 - Different sensitivities: we are more sensitive to green than red
 - varies from person to person (and with age)
 - Colorblindness—deficiency in at least one type of cone

Field sequential

Field sequential

Field sequential

Prokudin-Gorskii (early 1900's)

Lantern projector

http://www.loc.gov/exhibits/empire/

Prokudin-Gorskii (early 1990's)

Color sensing in camera: Prism

- Requires three chips and precise alignment
- More expensive

Color filter array

Bayer grid

Estimate missing components from neighboring values (demosaicing)

Why more green?

Human Luminance Sensitivity Function

Source: Steve Seitz

Bayer's pattern

Color filter array

YungYu Chuang's slide

Color images

 We'll treat color images as a vector-valued function:

$$f(x, y) = \begin{bmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{bmatrix}$$

We'll often convert to grayscale
 (e.g., 0.3 * r + 0.59 * g + 0.11 * b)

Dynamic range

- What is the range of light intensity that a camera can capture?
 - Called dynamic range
 - Digital cameras have difficulty capturing both high intensities and low intensities in the same image

Light response is nonlinear

- Our visual system has a large dynamic range
 - We can resolve both light and dark things at the same time
 - One mechanism for achieving this is that we sense light intensity on a logarithmic scale
 - an exponential intensity ramp will be seen as a linear ramp
 - Another mechanism is adaptation
 - rods and cones adapt to be more sensitive in low light, less sensitive in bright light.

Visual dynamic range

Background	Luminance (candelas per square meter)
Horizon sky	
Moonless overcast night	0.00003
Moonless clear night	0.0003
Moonlit overcast night	0.003
Moonlit clear night	0.03
Deep twilight	0.3
Twilight	3
Very dark day	30
Overcast day	300
Clear day	3,000
Day with sunlit clouds	30,000
Daylight fog	
Dull	300-1,000
Typical	1,000-3,000
Bright	3,000-16,000
Ground	
Overcast day	30–100
Sunny day	300
Snow in full sunlight	16,000

Luminance of everyday backgrounds. Source: Data from Rea, ed., Lighting Handbook 1984 Reference and Application, fig. 3-44, p. 3-24.

Dynamic range

- Our total dynamic range is high (~10⁹)
- Our dynamic range at a given time is still pretty high (~10⁴)
- A camera's dynamic range for a given exposure is relatively low (2⁸ = 256 tonal values, range of about ~10³)

High dynamic range imaging

Historical context

- Pinhole model: Mozi (470-390 BC),
 Aristotle (384-322 BC)
- Principles of optics (including lenses):
 Alhacen (965-1039)
- Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- **First photo:** Joseph Nicephore Niepce (1822)
- Daguerréotypes (1839)
- Photographic film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)
- **Television** (Baird, Farnsworth, Zworykin, 1920s)
- First consumer camera with CCD: Sony Mavica (1981)
- First fully digital camera: Kodak DCS100 (1990)

Niepce, "La Table Servie," 1822

CCD chip

Questions?

• 3-minute break

Projection

Projection

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Modeling projection

The coordinate system

- We will use the pinhole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
 - Why?
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles (on board)

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

• We get the projection by throwing out the last coordinate:

$$(x,y,z) \to (-d\frac{x}{z}, -d\frac{y}{z})$$

Modeling projection

- Is this a linear transformation?
 - no—division by z is nonlinear

Homogeneous coordinates to the rescue!

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

Converting *from* homogeneous coordinates

coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

$$(x, y, z) \Rightarrow \left| \begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right|$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as perspective projection

- The matrix is the **projection matrix**
- (Can also represent as a 4x4 matrix OpenGL does something like this)

Perspective Projection

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Orthographic projection

Perspective projection

Perspective distortion

What does a sphere project to?

Image source: F. Durand

Perspective distortion

- The exterior columns appear bigger
- The distortion is not due to lens flaws
- Problem pointed out by Da Vinci

Perspective distortion: People

Distortion

- Radial distortion of the image
 - Caused by imperfect lenses
 - Deviations are most noticeable for rays that pass through the edge of the lens

Correcting radial distortion

from Helmut Dersch

Distortion

Modeling distortion

Project
$$(\hat{x},\hat{y},\hat{z})$$
 $x_n' = \hat{x}/\hat{z}$ to "normalized" $y_n' = \hat{y}/\hat{z}$ $x_n' = \hat{y}/\hat{z}$ Apply radial distortion $x_d' = x_n'(1+\kappa_1r^2+\kappa_2r^4)$ $y_d' = y_n'(1+\kappa_1r^2+\kappa_2r^4)$ Apply focal length translate image center $x_n' = fx_d' + x_c$

- To model lens distortion
 - Use above projection operation instead of standard projection matrix multiplication

Other types of projection

- Lots of intriguing variants...
- (I'll just mention a few fun ones)

360 degree field of view...

Basic approach

- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
 - see http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-images.co.uk/article_pages/tilt_and_shift_ts-e.html

Titlt-shift images from Olivo Barbieri and Photoshop imitations

Dimensionality Reduction Machine (3D to 2D)

3D world

Point of observation

What have we lost?

- Angles
- Distances (lengths)

Projection properties

- Many-to-one: any points along same ray map to same point in image
- Points → points
- Lines → lines (collinearity is preserved)
 - But line through focal point projects to a point
- Planes → planes (or half-planes)
 - But plane through focal point projects to line

Projection properties

Parallel lines converge at a vanishing point

Each direction in space has its own vanishing point

- But parallels parallel to the image plane remain

parallel

Camera parameters

How can we model the geometry of a camera?

Two important coordinate systems:

- 1. World coordinate system
- 2. Camera coordinate system

Camera parameters

- To project a point (x,y,z) in world coordinates into a camera
- First transform (x,y,z) into camera coordinates
- Need to know
 - Camera position (in world coordinates)
 - Camera orientation (in world coordinates)
- The project into the image plane
 - Need to know camera intrinsics

Camera parameters

A camera is described by several parameters

- Translation T of the optical center from the origin of world coords
- Rotation R of the image plane
- focal length f, principle point (x'_c, y'_c) , pixel size (s_x, s_y)
- blue parameters are called "extrinsics," red are "intrinsics"

Projection equation

- The projection matrix models the cumulative effect of all parameters
- Useful to decompose into a series of operations

$$\boldsymbol{\Pi} = \begin{bmatrix} -fs_x & 0 & x'_c \\ 0 & -fs_y & y'_c \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{3x3} & \mathbf{0}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3x3} & \mathbf{T}_{3x1} \\ \mathbf{0}_{1x3} & 1 \end{bmatrix}$$
intrinsics
projection
rotation
translation

- The definitions of these parameters are **not** completely standardized
 - especially intrinsics—varies from one book to another

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

- How do we get the camera to "canonical form"?
 - (Center of projection at the origin, x-axis points right, y-axis points up, z-axis points backwards)

Perspective projection

$$\begin{bmatrix} -f & 0 & 0 \\ 0 & -f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

(intrinsics)

(converts from 3D rays in camera coordinate system to pixel coordinates)

in general,
$$\mathbf{K}= \left[egin{array}{cccc} -f & s & c_x \\ 0 & -lpha f & c_y \\ 0 & 0 & 1 \end{array}
ight]$$
 (upper triangular matrix)

(): aspect ratio (1 unless pixels are not square)

S: skew (0 unless pixels are shaped like rhombi/parallelograms)

 (c_x,c_y) : principal point ((0,0) unless optical axis doesn't intersect projection plane at origin)

Focal length

Can think of as "zoom"

24mm

50mm

200mm

Also related to field of view

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$(t \text{ in book's notation})$$

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

Projection matrix

Questions?