
Cornell CS667 Lecture : Volumetric diffusion 4 April 2006

Yu Tak Ting Lecturer: Steve Marschner

1 Introduction

From the Light Transport Equation(LTE)

(ω · ∇)L(x, ω) = −σtL(t, ω) + σs

∫
P (x, ω, ω′)L(x, ω′)dω′ + Q(x, ω) (1)

We want to find the moment.

1.1 Defining Moments

First, lets define moment. nth moment of f(x) is
∫

xnf(x)dx.

On real line, the zeroth and first moment are the area under the function and the mean of the distribution.

We are intersted in functions that are distribution over the sphere of direction – that is, function f(ω)
where ω is a unit vector. The moment are a little more complicated because the argument is a vector. But
it’s not so bad if we just need that first couple.

0th moment - still the integral of the whole thing. For the radiance function at a point in a volume, this
is the fluence or scalar irradiance:

φ(x) =
∫

4π

L(x, ω)dω (2)

1st moment - in some sense, this is the average direction of light flow. The three components of the first
moment are just the integrals weighted by ωx, ωy, ωt (the components of n):
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~E(x) =
∫

4π

ωL(x, ω)dω =
∫

4π

 ωx

ωy

ωz

L(x, ω)dω =

 ∫
4π

ωxL(x, ω)dω∫
4π

ωyL(x, ω)dω∫
4π

ωzL(x, ω)dω

 (3)

Lemma: Note that the first moment of a constant function of ω is zero:

∫
4π

ωxCdω = C

∫
4π

ωxdω = C

∫ 2π

0

∫ π
2

−π
2

sin(θ)(cos(θ)dθdφ) = 2πC

∫ π
2

−π
2

sin(θ) cos(θ)dθ

= 2πC [sin(θ)]
π
2
−π

2
= 0

... and similar for other components

A briefer way of writing this is :
∫
4π

ωdω = ~0

Corollary: The 0th moment of a linear functional (f(ω) = a · ω) is zero.

This expands to a sum of 3 cases at the previous observation:
∫
4π

(axωx+ayωy +azωz)dω = ax

∫
4π

ωxdω+
ay

∫
4π

ωydω + az

∫
4π

ωzdω

Lemma: The first moment of a linear functional (f(ω) = a · ω) is 4π
3 a.

This is
∫
4π

ω(a · ω)dω. (a · ω) is a scalar. ω(a · ω) is a vector.Components are∫
4π

(ωi(a1ω1 + a2ω2 + a3ω3)dω =
∑

j

aj

∫
4π

ωiωjdω (4)

When i 6= j : ωiωj is antisymmetric across the wi = 0 plane ⇒
∫

is zero.

For i = j : have
∫

ωi
2dω. But∫

4π

(ω1
2 + ω2

2 + ω3
2)dω =

∫
4π

1dω = 4π

=
∫

4π

ω1
2dω +

∫
ω2

2dω +
∫

ω3
2dω; by symmetry

= 3
∫

4π

ωi
2dω

So
∫
4π

ωi
2dω = 4π

3 . So each component is 4π
3 ai, result is 4π

3 a.

Lemma: The 0th moment of a quadratic form f(ω) = ωT Aω = ω·(Aω) is 4π
3 Tr(A) (where Tr(A) =

∑
i aii

(sum of diangonal elements)). This is another instance of the above reasoning. ωT Aω is
∑

ij ωiaijωj . So
the integral expands to ∑

ij

aij

∫
ωiωjdω

, ∫
ωiωjdω → 0 for i 6= j,

4π

3
for i = j
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=
4π

3

∑
i

aii =
4π

3
Tr(A)

.

1.2 Moments Summary

To summarize :
µ0 µ1

c 4πc 0
a · ω 0 4π

3 a
ωT Aω 4π

3 Tr(A) 0 (symmetry argument)

One more lemma, about spatial derivatives. The directional derivative of a linear functional that varies
spatially: (v · ∇)(a(x) · ω) = v · (∇a(x) · ω) = ωT (∇a(x))v

(v · ∇)(a(x) · ω) =
∑

j

vj
∂

∂xj
(a(x) · ω)

=
∑

j

vj
∂

∂xj
(
∑

i

ai(x)ωi)

=
∑
ij

ωi
∂ai

∂xj
(x)vj

=
∑
ij

ωi(∇a)ijvj

1.3 Moment of phase funtion

If we fix one direction, the phase function is a function of direction.
f(w) = p(ω0, ω)← depends only on ω0 · ω — i.e. rotationally symmetric about ω0.

0th moment:
∫
4π

p(ω0, ω)dω = 1 ( it’s a probablity distribution )
1st moment:

∫
4π

p(ω0, ω)ωdω. This is the average direction of scattering, in some sense.

By symmetry this has got to point in the direction ±ω0. So express ω in a coordinate system (u, v, w0)
where u and v are chosen arbitrarily to complete the ONB. The three components are then

∫
p(ω0, ω)(ω0 · ω)dω → this is t he familar g∫

p(ω0, ω)(u ∗ ω)dω = 0)} by symmetry. + and - hemisphere cancel∫
p(ω0, ω)(v ∗ ω)dω = 0)} by symmetry. + and - hemisphere cancel

So the moment µ1(p(ω0, ω)) = gω0
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2 Approximation of the volumetric Light Transport Equation

Now to get to the main point. From the volume LTE eq(1), we make the assumption that radiance is
directionally smooth enought to be approximated by a 1st order function in ω :

L(x, ω) =
1
4π

φ(x) +
3
4π

ω · E(x)← µ0( 1
4π φ(x)) = φ(x), µ0( 3

4π ω · E(x)) = 0

µ1( 1
4π φ(x)) = 0, µ1( 3

4π ω · E(x)) = E(x)
so agrees up to 1st order with L(x, ω)

Now substitution

(ω·∇)(
1
4π

φ(x)+
3
4π

ω·E(x))+σt(
1
4π

φ(x)+
3
4π

ω·E(x)) = σs(x)
∫

4π

p(x, ω, ω′)(
1
4π

φ(x)+
3
4π

ω′·E(x))dω′+Q(x, ω)

(5)

Now that we have restricted the radiance function to this particular form, we can no longer expect it to
solve the LTE exactly. Instead we will loook for agreement up to first order: The 0th and 1st moments of
the two sides should match.

What’s the 0th moment at this eqn?

LHS:

1
4π

∫
4π

ω · ∇φ(x)dω + 3
4π

∫
4π

(ω · ∇)(E(x) · ω)dω + σt

4π

∫
4π

φ(x)dω + 3σt

4π

∫
ω · E(x)dω

↑ ↑ ↑ ↑∫
ω · a = 0 (ω · ∇)(ω · a(x)) 4πφ(x)

∫
ω · a = 0

3
4π

∫
4π

(ωT (∇E(x))ω)dω σtφ(x)∫
ωT Aω = 4π

3 Tr(A)
Tr(∇E) = ∇ · E

µ0(LHS) = ∇ · E(x) + σtφ(x)
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RHS:

σs(x)
4π

∫
4π

∫
4π

p(x, ω, ω′)φ(x)dω′dω + 3σs(x)
4π

∫
4π

∫
4π

p(x, ω, ω′)ω′ · E(x)dω′dω + Q0(x)
↑ ↑

φ(x) is const E(x) is const∫
p(ω0, ω)dω = 1

∫
p(ω0, ω)dω = gω

σs(x)φ(x) 3σs(x)
4π

∫
4π

gω · E(x)dω∫
ω · a = 0

µ0(RHS) = σs(x)φ(x) + Q0

So in the end, the 0th moment reads: ∇ · E(x) + σt(x)φ(x) = σs(x)φ(x) + Q0(x) or ∇ · E(x) = (σs −
σt)(x)φ(x) + Q0(x) = σa(x)φ(x) + Q0(x)

This says something not too surprising about the flow of light: The vector irradiance is something that
tells us about the net flow of power across a surface, and the divergence of that says how much it’s flowing
into or out of an area. Power flow out of areas where there are sources, and it flows into (disappears from)
areas that have absorption.

So far this is just one statement about 4 functions(φ,E1, E2, E3). To get more constraints we look at the
1st order.

LHS:

1
4π

∫
ω(ω · ∇φ(x))dω + 3

4π

∫
ω(ωT∇E(x)ω)dω + σt

4π

∫
ωφ(x)dω + 3σt

4π

∫
ω(ω · E(x))dω

↑ ↑ ↑ ↑
µ1(ω · a) = 4π

3 a µ1(ωT Aω) = 0 µ1(c) = 0 µ1(ω · a) = 4π
3 a

µ1(LHS) = 1
3∇φ(x) + σtE(x)

RHS:

σs(x)
4π

∫
ω

∫
p(x, ω, ω′)φ(x)dω′dω + 3σs(x)

4π

∫
ω

∫
p(ω, ω′)ω′ · E(x)dω′dω + Q1(x)

φ(x) is const E(x) is const∫
p(ω, ω′)dω = 1

∫
p(ω, ω′)ω′ · E(x)dω′ = gω · E(x)

µ1(c) = 0 µ1(a · ω) = 4π
3 a

4π
3 gE(x)

σs(x)gE(x)

µ1(RHS) = σs(x)gE(x) + Q1(x)

So 1st order → 1
3∇φ(x) + σtE(x) = σs(x)gE(x) + Q1(x)

1
3∇φ(x) = (gσs(x)− σt(x))E(x) + Q1(x)

= −(σa + (1− g)σs)E(x) + Q1(x)
∇φ(x) = −3σ′tE(x) + 3Q1(x)

(1 − g)σs → reduced scattering coefficent: effective scattering for diffusion; narrower peaks has same
effect as less scattering.
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If sources are isotropic, Q1(x) = 0. This makes for a simpler 1st case:

∇φ(x) = −3φ′t(x)E(x) (1st order)
E(x) = − 1

3σ′
t(x)∇φ(x) or just E = −1

3σ′
t
∇φ

substitute into zero-order equation

∇ · E = −σaφ + Q0

∇ · ( −1
3σ′

t
∇φ) = −σaφ + Q0

−1
3σ′

t
∇2φ = −σaφ = Q0

∇2φ← Laplacian of φ - scalar 2nd derivative
∑

i
∂2φ

∂xi∂xi

or, in more classic form

∇2φ = 3σaσ′tφ− 3σ′tQ0 (6)

If we keep Q1,

E = − 1
3σ′t
∇φ +

1
σ′t

Q1

− 1
3σ′t
∇2φ +

1
σ′t
∇ ·Q1 = −σaφ + Q0

D∇2φ = σaφ−Q0 + 3D∇ ·Q1

where D = 1
3σ′

t
. This is the form used by Jensen et. al 01.
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