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Early Work in Cloth

 Geometric models
— Do not consider cloth’s physical properties
— focus on appearance (particularly folds and creases)
— Jerry Weill, 1986

 Physical models

— Various structural studies are done and cloth’s
Intrinsic behavior is attempted to be simulated

— C. Feynman, 1986
— Demetri Terzopoulos et all, 1987



Early Work in Cloth

e Particle models

— EXxplicitly represents the microstructure of woven cloth
with interacting particles

— David Breen et all, 1994



Jerry Well

* Probably the first person to
model cloth in any method
whatsoever

e A cable under self-weight
forms a catenary curve at
equilibrium

* A cloth hanging from a
discrete number of points
can be described by a
system of these curves y = a cosh(x/b)
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Jerry Well

6 Iterations of Relaxation

Surface Approximation

Spline Fir



C. Feynman

 Represented cloth in a 3D
space by using a 2D grid
 The energy for each point is }/

calculated in relation to its Pi
surrounding points ,i\ -
. The final position of cloth was

derived based on the
minimization of energy

E(P;;) = KEqasicij) T KoEbendingi j) T KgEgravitational i j)



Demetri Terzolpoulos

* Introduced a deformable
model intended for
generalized flexible
objects

e Does not consider weave
of the cloth, but only one
Internal elastic force

« Uses the Lagrange
equation of motion to
determine the equilibrium




Demetri Terzolpoulos




Motives

* \Woven fabrics are far from having ideal
elastic properties

* Physically-based, elastically-deformable
models somewhat successful (“super-
elastic” problem)

o Attempts at other methods:

— Network of rigid rods of a fixed length
(shearing, slow)

— Particle system (static, slow)



Cloth Grid Mesh
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———  Sheer springs, resist sheering stresses

Flexion springs, resist bending stresses



Dynamics and Forces

Once a mass-spring grid has been created, forces are
applied to the nodes to generate an animation.

The system is the mesh of mx n masses, each mass
with position at time t given by P, ;(t)

The evolution of the system is governed by the
fundamental law of dynamics:

Fij = Ha;

where p is the mass at point P;;(t), and a;; Is the
acceleration caused by the force F;;

Fi,j can be divided into internal and external forces



Internal Force

 Tensions of interconnected springs

Which are described by Hooke’s Law:
F=k-u

where F Is the applied force, u is the deformation
(displacement from equilibrium) of the elastic

body subjected to the force F, and k is the spring
constant.



Internal Force

e In our case, this force is basically the sum of the change
In point vectors multiplied by the spring stiffness for each
neighbor of each point.

Ffﬂ.t{'ﬁ-,j) =
- l: ik
_ E[k,HER K ikt ikt — [ LU : j ]

e R is the set regrouping all couples (k,1) such as
Py, 1 18 linked by a spring to F; ;,

o Liri= P, Py Tiynp

* .!‘.,[i]_jlk_! 1s the natural length of the spring linking
P; ; and Py,

o K, ;1 1s the stifiness of the spring linking P; ;
and F; .



External forces

 Force of gravity
|:gr(Pi,j) = MG

where g Is the acceleration of gravity

* Viscous damping
Fais(Pi;) = -CaigVi

where Cy Is the damping coefficient and v;; Is the
velocity at point P; ;.



External forces

* Viscous fluid (wind)
Fui(Pi;) = Cyi[nij - (Uguig- Vil i

where uy,41S a viscous fluid with uniform velocity,
v;jIs the velocity at point P;;, n;; Is the unit

normal at P;;, and C; Is the viscosity constant

 The net force acting on any node Iin the mass-
spring model is the sum of the above forces
for that node.



Integration

*To generate animation of cloth, it is necessary to compute
the location of the nodes for a series of time steps.

*Provot uses a simple Euler method to approximate the
fundamental equation of dynamics.

a;j(t + At) = +F; (1)
‘Fi.j(f’ -+ ,lt]l = v*.i..j I:i]l + At ai..j(f’ -+ jifjl

Pz'_jl[i‘f -+ ,lf,:}l — Pi.jl[ﬁ:l + Al vf;_j{t -+ if}



Forward Euler

 In this method, the position of the nodes In
the next time step are computed using
only past information.
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Forward Euler Error

o Explicit integration has numerous
problems including instability at large time
steps and slow propagation of the effects
of forces over the cloth material.




Dynamic Inverse Procedures

e Some cases where cloth movement is not
entirely caused by analytically computed forces
(contact problems)

e So far, we can compute displacement of a point
due to a force applied to it, but we can solve the
Inverse problem for hanging points

« A similar procedure can be used to deal with
object collisions and self-intersection, though not
covered In this paper (Provot 97)



Collision Detection

Collisions of two types

— Point-triangle collision

— Edge-edge collision

At a time where a collision Is detected, a
physics-based response Is calculated

Accurate, but limited in that all nodes are
assumed to have constant velocity

Successful in simulating draping
Problems with sliding contact and jittering



The “Super-Elastic” Effect

After 200 iterations

Initial position



The “Super-Elastic” Effect

e Case study: subject to gravity, but no wind
e Concentration of local deformations
« Deformation rate, decreases very rapidly

 Real-world problem: such a deformation
never occurs since real woven fabrics
have non-linear elasticity (and tear when
high loads are applied)

1) The deformation rate is defined as =(l-1,)/l,
where |, is the natural spring length and | is its length at any time t



Increasing Stiffness

 Stiffer springs should lower the deformation rate

e For a given time step At and mass y, there is a
critical stiffness value K_ above which the
numerical resolution of the system is divergent

e Thus, the maximum At is equal to the natural
period of a simple harmonic oscillator (mass on

a spring):
r |
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Increasing Stiffness

e |f we want to increase stiffness, we have
to decrease At below the new decreased
value of T,

 Need new method to avoid the super-
elastic effect, without decreasing At



Constraints on Deformation Rates

 Assume that the direction of the elongated
spring Is correct, but limit it to a critical
deformation rate (1.)

for (At++)
Computeevery r
f(er|r>r,)

r=r,



Constraints on Deformation Rates
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Adjustment of super-elongated spring linking a fixed and a loose mass



Hanging Sheet Results
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Hanging Sheet Comparison

On the left: a stiff elastic model computed in 9 min.
On the right: new model computed in 1 min.



Flag in a Strong Wing

i
-e.
&

Semi-rigid flag and elastic Semi-rigid flag remains stable
flag when stiffness is low when stiffness is increased



Wind in a Sall

Hangs by 8 points on the upper rod and is ties to 2 points on the lower rod



Disadvantages

Diverges from strictly physics-based
simulation

Dependent on the order in which the
springs are examined

Correcting one spring may overextend
another

Reilterative process does not always
converge to a completely non-extended
state



Advantages

Produces realistic-looking output in most cases

The time constant does not need to be reduced
to match higher spring constants

Can use an order of magnitude large time step

90% reduction in running time of the simulation
according to the author

Thus this model sacrifices a tolerable amount of
accuracy for a dramatic speed improvement



Summary

A physically-based model for animating cloth
objects

Derived from elastically-deforming models, but
takes into account non-elastic properties of
woven fabrics

Cloth object approximated with a deformable
surface network of masses and springs

Dynamic inverse procedure to correct for
unrealistic local deformation about the boundary
conditions.



