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Early Work in Cloth

• Geometric models
– Do not consider cloth’s physical properties 
– focus on appearance (particularly folds and creases)
– Jerry Weil, 1986

• Physical models
– Various structural studies are done and cloth’s 

intrinsic behavior is attempted to be simulated
– C. Feynman, 1986
– Demetri Terzopoulos et all, 1987



Early Work in Cloth

• Particle models
– Explicitly represents the microstructure of woven cloth 

with interacting particles  
– David Breen et all, 1994



Jerry Weil

• Probably the first person to 
model cloth in any method 
whatsoever

• A cable under self-weight 
forms a catenary curve at 
equilibrium

• A cloth hanging from a 
discrete number of points 
can be described by a 
system of these curves y = a cosh(x/b)



Jerry Weil



C. Feynman

• Represented cloth in a 3D 
space by using a 2D grid

• The energy for each point is 
calculated in relation to its 
surrounding points

• The final position of cloth was 
derived based on the 
minimization of energy

E(Pi,j) = ksEelastic(i,j) + kbEbending(i,j) + kgEgravitational(i,j)



Demetri Terzolpoulos

• Introduced a deformable 
model intended for 
generalized flexible 
objects

• Does not consider weave 
of the cloth, but only one 
internal elastic force

• Uses the Lagrange 
equation of motion to 
determine the equilibrium



Demetri Terzolpoulos



Motives

• Woven fabrics are far from having ideal 
elastic properties

• Physically-based, elastically-deformable 
models somewhat successful (“super-
elastic” problem)

• Attempts at other methods:
– Network of rigid rods of a fixed length 

(shearing, slow)
– Particle system (static, slow)



Cloth Grid Mesh

Structural springs, resist stretching stresses

Sheer springs, resist sheering stresses

Flexion springs, resist bending stresses



Dynamics and Forces

• Once a mass-spring grid has been created, forces are 
applied to the nodes to generate an animation.  

• The system is the mesh of m x n masses, each mass 
with position at time t given by Pi,j(t)

• The evolution of the system is governed by the 
fundamental law of dynamics:

Fi,j = �ai,j

where � is the mass at point Pi,j(t), and ai,j is the 
acceleration caused by the force Fi,j.

• Fi,j can be divided into internal and external forces



Internal Force

• Tensions of interconnected springs

Which are described by Hooke’s Law:

F = k · u

where F is the applied force, u is the deformation 
(displacement from equilibrium) of the elastic 
body subjected to the force F, and k is the spring 
constant.



Internal Force
• In our case, this force is basically the sum of the change 

in point vectors multiplied by the spring stiffness for each 
neighbor of each point.



External forces

• Force of gravity
Fgr(Pi,j) = �g

where g is the acceleration of gravity

• Viscous damping
Fdis(Pi,j) = -Cdisvi,j

where Cdis is the damping coefficient and vi,j is the 
velocity at point Pi,j.



External forces

• Viscous fluid (wind)
Fvi(Pi,j) = Cvi [ni,j · (ufluid - vi,j)] ni,j

where ufluid is a viscous fluid with uniform velocity, 
vi,j is the velocity at point Pi,j, ni,j is the unit 
normal at Pi,j, and Cvi is the viscosity constant

• The net force acting on any node in the mass-
spring model is the sum of the above forces
for that node.



Integration

•To generate animation of cloth, it is necessary to compute 
the location of the nodes for a series of time steps.  

•Provot uses a simple Euler method to approximate the 
fundamental equation of dynamics.  



Forward Euler

• In this method, the position of the nodes in 
the next time step are computed using 
only past information. 



Forward Euler Error

• Explicit integration has numerous 
problems including instability at large time 
steps and slow propagation of the effects 
of forces over the cloth material. 



Dynamic Inverse Procedures

• Some cases where cloth movement is not 
entirely caused by analytically computed forces 
(contact problems)

• So far, we can compute displacement of a point 
due to a force applied to it, but we can solve the 
inverse problem for hanging points

• A similar procedure can be used to deal with 
object collisions and self-intersection, though not 
covered in this paper (Provot 97)



Collision Detection

• Collisions of two types
– Point-triangle collision
– Edge-edge collision

• At a time where a collision is detected, a 
physics-based response is calculated

• Accurate, but limited in that all nodes are 
assumed to have constant velocity

• Successful in simulating draping
• Problems with sliding contact and jittering



The “Super-Elastic” Effect

Initial position After 200 iterations



The “Super-Elastic” Effect

• Case study: subject to gravity, but no wind
• Concentration of local deformations
• Deformation rate1 decreases very rapidly
• Real-world problem: such a deformation 

never occurs since real woven fabrics 
have non-linear elasticity (and tear when 
high loads are applied)  

1) The deformation rate is defined as �=(l-l0)/l0

where l0 is the natural spring length and l is its length at any time t



Increasing Stiffness

• Stiffer springs should lower the deformation rate

• For a given time step �t and mass �, there is a 
critical stiffness value Kc above which the 
numerical resolution of the system is divergent

• Thus, the maximum �t  is equal to the natural
period of a simple harmonic oscillator (mass on 
a spring):



Increasing Stiffness

• If we want to increase stiffness, we have 
to decrease �t below the new decreased 
value of T0

• Need new method to avoid the super-
elastic effect, without decreasing �t



Constraints on Deformation Rates

• Assume that the direction of the elongated 
spring is correct, but limit it to a critical 
deformation rate (�c )

for (�t++)

Compute every ��
if ( � � � � > �c )

� = �c 



Constraints on Deformation Rates

Adjustment of super-elongated spring linking two loose masses

Adjustment of super-elongated spring linking a fixed and a loose mass



Hanging Sheet Results

�c (structural) = 10%
�c (flexion) = 0%

�c (structural/shear) = 10%
�c (flexion) = 0%



Hanging Sheet Comparison

On the left: a stiff elastic model computed in 9 min.
On the right: new model computed in 1 min.



Flag in a Strong Wing

Semi-rigid flag and elastic 
flag when stiffness is low

Semi-rigid flag remains stable 
when stiffness is increased



Wind in a Sail

Hangs by 8 points on the upper rod and is ties to 2 points on the lower rod



Disadvantages

• Diverges from strictly physics-based 
simulation

• Dependent on the order in which the 
springs are examined

• Correcting one spring may overextend 
another

• Reiterative process does not always 
converge to a completely non-extended 
state



Advantages

• Produces realistic-looking output in most cases

• The time constant does not need to be reduced 
to match higher spring constants

• Can use an order of magnitude large time step
• 90% reduction in running time of the simulation 

according to the author

• Thus this model sacrifices a tolerable amount of 
accuracy for a dramatic speed improvement



Summary

• A physically-based model for animating cloth 
objects

• Derived from elastically-deforming models, but 
takes into account non-elastic properties of 
woven fabrics

• Cloth object approximated with a deformable 
surface network of masses and springs

• Dynamic inverse procedure to correct for 
unrealistic local deformation about the boundary 
conditions.


