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Announcements

» Projects: Email short (1-2 paragraphs)
update on project by next Tuesday
— Plans till project due date
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Complexity

Lighting: many lights, environment maps
— Global illumination, shadows

Materials: BRDFs, textures

Geometry: Level-of-detail, point-based
representations

All: image-based rendering
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Image-based Modeling

» Extract geometry + textures from pictures
— Create a simple model

* Reuse geometry and texture to render
scene from new viewpoints

» Facade system:
— Debevec and Malik, UCB
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Match Edges

« Start from photograph of building
« User creates rudimentary model with cubes

* Marks corresponding edges between model and
photographs

* Enough correspondences to reconstruct camera
and model parameters
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Use blocks

 Easy to specify i,

* Fewer interactions i b

igure 3: A wedge block with its parameters and bounding box.

ground_plane

» Easy to determine
final surface /*’\
RGN e
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Figure 4: (a) A geometric model of a simple building. (b) The
model’s hierarchical representation. The nodes in the tree repre-
sent parametric primitives (called blocks) while the links contain
the spatial relationships between the blocks
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Find best fit

Project model representation to camera
Create error term
Minimize error

Iterative method updates model representation
and looks for best fit

Also solves for camera parameters
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Extract textures

 Extract textures from original photograph
* Project them onto the surface
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View-dependent texture mapping

view [

viriwal view

madel

Figure 12: The weighting fanciion used in view-dependent fexiure
magping. The pivel in the virteal view corvesponding to the point
o the model is assigned a weighted average af the corresponding
pivelsin actualviews I and 2. The weights wy andwy are inversely
inversely proporional to the magnitde af angles gy and ag. Al-
ternately, more soplisiicaled weighting functions basedon expected
Joreshoriening and image resampling can be wsed.
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Example: Extract Geometry
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(e}
Figure 8: The high school madel, reconsiracied from twelve pho-
tographs. (a) Overhead view. (b) Rear view. () Aerial view show-
ing the recovered camerapositions. Twe nearly coincident cameras
can be observed in front of the building; their photographs were
taken from the second story af a bulding across ihe sireet.
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Example: Final Model w/ Textures
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Used in the Matrix
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IBM Discussion

 Cons:

— Small geometric details not included in model
= primitives represented by the user are limited

— Features in textures not part of model
— Fair amount of manual input required!

* Pros:

— Effective and useful
= RealViz, ...

— Open area of research
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Cons of IBM

« Reasonable image quality but

— Lighting is baked in: to undo lighting need
material properties

— Geometry is fixed
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Image Based Lighting

 Real Scene

» Goal: place synthetic objects on table
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Image Based Lighting

» Capture illumination using illumination
sphere
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Image Based Lighting
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Image Based Lighting

captured illumination field

K A
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Image Based Lighting

light based model

synthetic objects
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local scene
[

Real scene
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Image Based Lighting

» Use renderer - compute effects of synthetic
objects on local scene

light based model

. IR

synthetic objects (BRDF known) local scene (BRDF estimated
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Image Based Lighting

 Render into the scene

background
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Image Based Lighting

* Render synthetic objects
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Image Based Lighting

» Effect of local scene on real scene
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Image Based Lighting

» Add differences to image
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Discussion

» Good results for special effects

» But, estimating reflectances problematic
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Inverse global illumination

» Goal: recover BRDF per patch

» But account for Gl in an interior
environment

* |dea: solve for Ward BRDF model
— specular parameters uniform per patch
— diffuse interreflection handled trivially

— specular interreflection (rare) handled by
simple iterative algorithm
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Handling interreflection

 In diffuse case, all is easy
— each patch lit by sources and other patches

B; = E; +piZBjF?;j

J

» Specular case is more tricky
— illum. depends on specular parameters elsewhere

— assuming diffuse dominates, iteratively solve for a
correction for specular illumination

— (note: must observe a highlight on every surface)

Li = (& 4 paK (or, @)1
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|Gl inputs
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40 high-dynamic-range images

© Kavita Bala, Computer Science, Cornell University

© Kavita Bala, Computer Science, Cornell University




|Gl results

Re-rendered (bottom) to match input (top)
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|Gl results

Re-rendered with new light (bottom) to match photos (top)
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Summary of IBM, IBL

* Very powerful

« Many interesting research areas to be
solved
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Image-based Approaches

* Goal: Realism!

* Image is input and rendering primitive
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Comparison

* No depth
— QuickTime VR (simplest, 2D panoramas)
— Lumigraph/Light Field (4D arrays)

* Reconstructed Depth
— Plenoptic Modeling (2.5 D)

* IBMvs. IBR
— Some manual user input ok
— Simple geometry recovered with user assistance
— Complex geometry represented as texture
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Conclusions

* IBR: promising approach to handle complexity

» Benefits:
— No labor-intensive modeling
— High geometric and material complexity

— Rendering time constant: proportional to image
size, independent of scene complexity

» Disadvantages:
— Quality
— Not-quite automatic
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« Exam: Everything till today
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